The proportions of muscle and fat tissues in the human body, referred to as body composition is a vital measurement for cancer patients. Body composition has been recently linked to patient survival and the onset/recurrence of several types of cancers in numerous cancer research studies. This paper introduces a fully automatic framework for the segmentation of muscle and fat tissues from CT images to estimate body composition. We developed a novel finite element method (FEM) deformable model that incorporates a priori shape information via a statistical deformation model (SDM) within the template-based segmentation framework. The proposed method was validated on 1000 abdominal and 530 thoracic CT images and we obtained very good segmentation results with Jaccard scores in excess of 90% for both the muscle and fat regions.
The VESSEL12 (VESsel SEgmentation in the Lung) challenge objectively compares the performance of different algorithms to identify vessels in thoracic computed tomography (CT) scans. Vessel segmentation is fundamental in computer aided processing of data generated by 3D imaging modalities. As manual vessel segmentation is prohibitively time consuming, any real world application requires some form of automation. Several approaches exist for automated vessel segmentation, but judging their relative merits is difficult due to a lack of standardized evaluation. We present an annotated reference dataset containing 20 CT scans and propose nine categories to perform a comprehensive evaluation of vessel segmentation algorithms from both academia and industry. Twenty algorithms participated in the VESSEL12 challenge, held at International Symposium on Biomedical Imaging (ISBI) 2012. All results have been published at the VESSEL12 website http://vessel12.grand-challenge.org. The challenge remains ongoing and open to new participants. Our three contributions are: (1) an annotated reference dataset available online for evaluation of new algorithms; (2) a quantitative scoring system for objective comparison of algorithms; and (3) performance analysis of the strengths and weaknesses of the various vessel segmentation methods in the presence of various lung diseases.
Automatic segmentation of iron-rich deep gray matter can be improved by incorporating QSM. Voxel-based evaluation yielded increased R2 * and QSM in MS subjects in all four nuclei studied with R2 *, benefiting the most from localized analysis over whole-structure measures.
The ability to compute body composition in cancer patients lends itself to determining the specific clinical outcomes associated with fat and lean tissue stores. For example, a wasting syndrome of advanced disease associates with shortened survival. Moreover, certain tissue compartments represent sites for drug distribution and are likely determinants of chemotherapy efficacy and toxicity. CT images are abundant, but these cannot be fully exploited unless there exist practical and fast approaches for tissue quantification. Here we propose a fully automated method for segmenting muscle, visceral and subcutaneous adipose tissues, taking the approach of shape modeling for the analysis of skeletal muscle. Muscle shape is represented using PCA encoded Free Form Deformations with respect to a mean shape. The shape model is learned from manually segmented images and used in conjunction with a tissue appearance prior. VAT and SAT are segmented based on the final deformed muscle shape. In comparing the automatic and manual methods, coefficients of variation (COV) (1 − 2%), were similar to or smaller than inter-and intra-observer COVs reported for manual segmentation.
Abstract. Fitting parameterized 3D shape and general reflectance models to 2D image data is challenging due to the high dimensionality of the problem. The proposed method combines the capabilities of classical and photometric stereo, allowing for accurate reconstruction of both textured and non-textured surfaces. In particular, we present a variational method implemented as a PDE-driven surface evolution interleaved with reflectance estimation. The surface is represented on an adaptive mesh allowing topological change. To provide the input data, we have designed a capture setup that simultaneously acquires both viewpoint and light variation while minimizing self-shadowing. Our capture method is feasible for real-world application as it requires a moderate amount of input data and processing time. In experiments, models of people and everyday objects were captured from a few dozen images taken with a consumer digital camera. The capture process recovers a photo-consistent model of spatially varying Lambertian and specular reflectance and a highly accurate geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.