Acid whey is a by-product generated in large quantities during dairy processing, and is characterized by its low pH and high chemical oxygen demand. Due to a lack of reliable disposal pathways, acid whey currently presents a major sustainability challenge to the dairy industry. The study presented in this paper proposes a solution to this issue by transforming yogurt acid whey (YAW) into potentially palatable and marketable beverages through yeast fermentation. In this study, five prototypes were developed and fermented by Kluyveromyces marxianus, Brettanomyces bruxellensis, Brettanomyces claussenii, Saccharomyces cerevisiae (strain: Hornindal kveik), and IOC Be Fruits (IOCBF) S. cerevisiae, respectively. Their fermentation profiles were characterized by changes in density, pH, cell count, and concentrations of ethanol and organic acids. The prototypes were also evaluated on 26 sensory attributes, which were generated through a training session with 14 participants. While S. cerevisiae (IOCBF) underwent the fastest fermentation (8 days) and B. claussenii the slowest (21 days), K. marxianus and S. cerevisiae (Hornindal kveik) showed similar fermentation rates, finishing on day 20. The change in pH of the fermentate was similar for all five strains (from around 4.45 to between 4.25 and 4.31). Cell counts remained stable throughout the fermentation for all five strains (at around 6 log colony-forming units (CFU)/mL) except in the case of S. cerevisiae (Hornindal kveik), which ultimately decreased by 1.63 log CFU/mL. B. bruxellensis was the only strain unable to utilize all of the sugars in the substrate, with residual galactose remaining after fermentation. While both S. cerevisiae (IOCBF)- and B. claussenii-fermented samples were characterized by a fruity apple aroma, the former also had an aroma characteristic of lactic acid, dairy products, bakeries and yeast. A chemical odor characteristic of petroleum, gasoline or solvents, was perceived in samples fermented by B. bruxellensis and K. marxianus. An aroma of poorly aged or rancid cheese or milk also resulted from B. bruxellensis fermentation. In terms of appearance and mouthfeel, the S. cerevisiae (IOCBF)-fermented sample was rated the cloudiest, with the heaviest body. This study provides a toolkit for product development in a potential dairy-based category of fermented alcoholic beverages, which can increase revenue for the dairy industry by upcycling the common waste product YAW.
As the Greek-style yogurt market continues to experience prosperous growth, finding the most appropriate destination for yogurt acid whey (YAW) is still a challenge for Greek yogurt manufacturers. This study provides a direct alternative treatment of YAW by leveraging the abilities of Mucor circinelloides and Mucor genevensis to raise the pH of YAW and to produce fungal biomass with a high lipid content. Aerobic cultivations of these species were conducted in YAW, both with and without the addition of lactase, at 30 °C, and 200 rpm agitation. The density, pH, biochemical oxygen demand (BOD), biomass production, lipid content, fatty acid profile, and sugar and lactic acid concentrations were regularly measured throughout the 14-day cultivations. The data showed that M. genevensis was superior at deacidifying YAW to a pH above 6.0—the legal limit for disposing of cultured dairy waste. On the other hand, M. circinelloides generated more fungal biomass, containing up to 30% w/w of lipid with high proportions of oleic acid and γ-linolenic acid. Additionally, the treatments with lactase addition showed a significant decrease in the BOD. In conclusion, our results present a viable treatment to increase the pH of YAW and decrease its BOD, meanwhile generating fungal oils that can be further transformed into biodiesel or processed into functional foods or dietary supplements.
Listeria monocytogenes is a ubiquitous pathogen that can cause morbidity and mortality in the elderly, immune compromised, and the fetuses of pregnant women. The intrinsic properties of fresh cheese—high water activity (aW), low salt content, and near-neutral pH—make it susceptible to L. monocytogenes contamination and growth at various points in the production process. The aim of this study was to investigate the ability of lactose oxidase (LO), a naturally derived enzyme, to inhibit the growth of L. monocytogenes in fresh cheese during various points of the production process. Lab-scale queso fresco was produced and inoculated with L. monocytogenes at final concentrations of 1 log CFU/mL and 1 CFU/100 mL. LO and LO sodium thiocyanate (TCN) combinations were incorporated into the milk or topically applied to the finished cheese product in varying concentration levels. A positive control and negative control were included for all experiments. When L. monocytogenes was inoculated into the milk used for the cheese-making process, by day 28, the positive control grew to above 7 log CFU/g, while the 0.6 g/L treatment (LO and LO + TCN) fell below the limit of detection (LOD) of 1.3 log CFU/g. In the lower inoculum, the positive control grew to above 7 log CFU/g, and the treatment groups fell below the LOD by day 21 and continued through day 28 of storage. For surface application, outgrowth occurred with the treatments in the higher inoculum, but some inhibition was observed. In the lower inoculum, the higher LO and LO-TCN concentrations (0.6 g/L) reduced L. monocytogenes counts to below the LOD, while the control grew out to above 7 log CFU/g, which is a >5 log difference between the control and the treatment. These results suggest that LO could be leveraged as an effective control for L. monocytogenes in a fresh cheese.
High-Pressure Processing’s (HPP) non-thermal inactivation of cells has been largely incompatible with food products in which the activity of selected cultures is intended (e.g., bio-preservation). This work aims to overcome this limitation using a cocoa butter encapsulation system for freeze-dried cultures that can be integrated with HPP technology with minimal detrimental effects on cell viability or activity capabilities. Using commercially available freeze-dried protective cultures, the desiccated cells survived HPP (600 MPa, 5 °C, 3 min) and subsequently experienced a 0.66-log increase in cell counts during 2 h of incubation. When the same culture was rehydrated prior to HPP, it underwent a >6.07-log decrease. Phosphate-buffered saline or skim milk inoculated with cocoa butter-encapsulated culture up to 24 h before HPP displayed robust cell counts after HPP and subsequent plating (8.37–9.16 CFU/mL). In addition to assessing viability following HPP, the study sought to test the applicability in a product in which post-HPP fermentation is desired While HPP-treated encapsulated cultures initially exhibited significantly delayed fermentative processes compared to the positive controls, by 48 h following inoculation, the HPP samples’ pH values bore no significant difference from those of the positive controls (encapsulated samples: pH 3.83 to 3.92; positive controls: pH 3.81 to 3.85). The HPP encapsulated cultures also maintained high cell counts throughout the fermentation (≥8.95 log CFU/mL).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.