Although the detection of several components of the fibroblast growth factor (FGF) signaling pathway in human embryonic stem cells (hESCs) has been reported, the functionality of that pathway and effects on cell fate decisions are yet to be established. In this study we characterized expression of FGF-2, the prototypic member of the FGF family, and its receptors (FGFRs) in undifferentiated and differentiating hESCs; subsequently, we analyzed the effects of FGF-2 on hESCs, acting as both exogenous and endogenous factors. We have determined that undifferentiated hESCs are abundant in several molecular-mass isoforms of FGF-2 and that expression pattern of these isoforms remains unchanged under conditions that induce hESC differentiation. Significantly, FGF-2 is released by hESCs into the medium, suggesting an autocrine activity. Expression of FGFRs in undifferentiated hESCs follows a specific pattern, with FGFR1 being the most abundant species and other receptors showing lower expression in the following order: FGFR1 → FGFR3 → FGFR4 → FGFR2.Initiation of differentiation is accompanied by profound changes in FGFR expression, particularly the upregulation of FGFR1. When hESCs are exposed to exogenous FGF-2, extracellular signal-regulated kinases are phosphorylated and thereby activated. However, the presence or absence of exogenous FGF-2 does not significantly affect the proliferation of hESCs. Instead, increased concentration of exogenous FGF-2 leads to reduced outgrowth of hESC colonies with time in culture. Finally, the inhibitor of FGFRs, SU5402, was used to ascertain whether FGF-2 that is released by hESCs exerts its activities via autocrine pathways. Strikingly, the resultant inhibition of FGFR suppresses activation of downstream protein kinases and causes rapid cell differentiation, suggesting an involvement of autocrine FGF signals in the maintenance of proliferating hESCs in the undifferentiated state. In conclusion from our data, we propose that this endogenous FGF signaling pathway can be implicated in self-renewal or differentiation of hESCs.
The transcription program that is responsible for the pluripotency of human ESCs (hESCs) is believed to be comaintained by exogenous fibroblast growth factor-2 (FGF-2), which activates FGF receptors (FGFRs) and stimulates the mitogen-activated protein kinase (MAPK) pathway. However, the same pathway is stimulated by insulin receptors, insulin-like growth factor 1 receptors, and epidermal growth factor receptors. This mechanism is further complicated by intracrine FGF signals. Thus, the molecular mechanisms by which FGF-2 promotes the undifferentiated growth of hESCs are unclear. Here we show that, in undifferentiated hESCs, exogenous FGF-2 stimulated the expression of stem cell genes while suppressing cell death and apoptosis genes. Inhibition of autocrine FGF signaling caused upregulation of differentiation-related genes and downregulation of stem cell genes. Thus, exogenous FGF-2 reinforced the pluripotency maintenance program of intracrine FGF-2 signaling. Consistent with this hypothesis, expression of endogenous FGF-2 decreased during hESC differentiation and FGF-2 knockdown-induced hESC differentiation. In addition, FGF-2 signaling via FGFR2 activated MAPK kinase/extracellular signal-regulated kinase and AKT kinases, protected hESC from stress-induced cell death, and increased hESC adhesion and cloning efficiency. This stimulation of self-renewal, cell survival, and adhesion by exogenous and endogenous FGF-2 may synergize to maintain the undifferentiated growth of hESCs. Stem Cells 2009;27:1847–1857
Serial quantitation of BCR-ABL IntroductionReverse-transcription real-time quantitative polymerase chain reaction (RQ-PCR) is used routinely to quantify levels of BCR-ABL mRNA in peripheral blood and bone marrow samples from chronic myelogenous leukemia (CML) patients undergoing therapy. The technique can accurately determine response to treatment and is particularly valuable for patients who have achieved a complete cytogenetic response. The National Comprehensive Cancer Network (NCCN) 1 and the European LeukemiaNet (ELN) 2 recommend similar monitoring schedules for patients treated with imatinib and the ELN defines an optimal response as the attainment of a major molecular response (MMR) after 18 months of therapy. Monitoring of BCR-ABL mRNA levels is also useful for gauging therapeutic response for patients with Philadelphia chromosomepositive acute lymphoblastic leukemia (Ph ϩ ALL). The CML meeting at the National Institutes of Health in Bethesda in October 2005 made several recommendations for the harmonization of minimal residual disease (MRD) assessment and proposed an international scale (IS) for BCR-ABL RQ-PCR measurements. 8 Importantly, the IS is essentially identical to that used in the International Randomized Study of Interferon and STI571 (IRIS) study, 9 with the IRIS standardized baseline defined as 100% BCR-ABL IS and MMR (3-log reduction relative to the standardized baseline) defined as 0.1% BCR-ABL IS . The original standards used for the IRIS trial are no longer available, however traceability to the IRIS scale is provided by the extensive quality control data generated by the Adelaide laboratory over a period of several years. 10,11 To enable testing centers to gain access to the IS, the Adelaide laboratory initiated a process to develop and validate laboratoryspecific conversion factors (CFs) that can be used to convert local values to IS values. 11 The strength of this approach is that testing centers can continue to use their existing assay conditions and continue to express results according to local preferences in addition to expressing results on the IS. The concept of the IS is analogous to established procedures for other quantitative assays, for example the International Normalized Ratio (INR) for prothrombin time. 12 Many laboratories with validated CFs have established themselves as national or regional reference laboratories and are in the process of propagating CFs to local centers. 13 While this process has generally worked well, it is apparent that the establishment of CFs is time-consuming, complex, expensive, and open to only a limited number of laboratories at any given time. Furthermore, it is unclear how frequently any individual CF will need to be revalidated. We sought therefore to develop an alternative means for testing laboratories to access the IS by developing calibrated, accredited primary reference reagents for BCR-ABL RQ-PCR analysis. StrategyIdeally, the formulation for primary reference reagents should be as close as possible to the usual analyte, should cove...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.