Pulmonary insulin delivery is being developed as a more acceptable alternative to conventional subcutaneous administration. In 15 healthy Beagle dogs (average weight 9.3 kg), we compared insulin distribution in arterial, deep venous, and hepatic portal circulation. Dogs received 0.36 units/kg s.c. regular human insulin (n ؍ 6) or 1 mg (2.8 units/kg) or 2 mg (5.6 units/kg) dry-powder human inhaled insulin (n ؍ 3 and 6, respectively). Postinhalation of inhaled insulin (1 or 2 mg), arterial insulin levels quickly rose to a maximum of 55 ؎ 6 or 92 ؎ 9 U/ml, respectively, declining to typical fasting levels by 3 h. Portal levels were lower than arterial levels at both doses, while deep venous levels were intermediate to arterial and portal levels. In contrast, subcutaneous insulin was associated with a delayed and lower peak arterial concentration (55 ؎ 8 U/ml at 64 min), requiring 6 h to return to baseline. Peak portal levels for subcutaneous insulin were comparable to those for 1 mg and significantly less than those for 2 mg inhaled insulin, although portal area under the curve (AUC) was comparable for the subcutaneous and 2-mg groups. The highest insulin levels with subcutaneous administration were seen in the deep venous circulation. Interestingly, the amount of glucose required for maintaining euglycemia was highest with 2 mg inhaled insulin. We conclude that plasma insulin AUC for the arterial insulin level (muscle) and hepatic sinusoidal insulin level (liver) is comparable for 2 mg inhaled insulin and 0.36 units/kg subcutaneous insulin. In addition, arterial peak concentration following insulin inhalation is two times greater than subcutaneous injection; however, the insulin is present in the circulation for half the time. Diabetes 53:877-881, 2004
The Provisional Advisory Level (PAL) protocol was applied to estimate inhalation exposure limits for phosgene (CG). Three levels (PAL 1, PAL 2, and PAL 3), distinguished by severity of toxic effects, are developed for 24-hour, 30-day, 90-day, and 2-year durations of potential drinking water and inhalation exposures for the general public. For background on the PAL program and a description of the methodology used in deriving PALs, the reader is referred to accompanying papers in this Supplement. Data on humans are limited to occupational exposures or accounts from the use of phosgene as a chemical warfare agent in World War I. Animal studies with phosgene show a steep dose-response curve for pulmonary edema and mortality, with little species variability in effects. Although immediately upon exposure lacrimation and upper respiratory irritation can occur, the main effect in the target organ, a progressive pulmonary edema, occurs after a latency period of 1-24 hours. PAL estimates were approved by the Expert Consultation Panel for Provisional Advisory Levels in May 2007. Exposure limits for oral exposure to CG are not developed due to insufficient data. PAL estimates for inhalation exposure to CG are presented: The 24-hour PAL values for severity levels 1, 2, and 3 are 0.0017, 0.0033 and 0.022 ppm, respectively. The 30- and 90-day PAL values are 0.0006 and 0.0012 ppm for the PAL 1 and 2 values, respectively. These inhalation values were also accepted as the 2-year PAL 1 and 2 values because severity of lesions in the key study did not increase when exposures were extended from 4 weeks to 12 weeks. Data were not available for deriving 30-day, 90-day, and 2-year PAL 3 values.
No abstract
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.