SUMMARY The altered metabolism of tumors has been considered a target for anti-cancer therapy. However, the relationship between distinct tumor-initiating lesions and anomalies of tumor metabolism in vivo has not been addressed. We report that MYC-induced mouse liver tumors significantly increase both glucose and glutamine catabolism, whereas MET-induced liver tumors use glucose to produce glutamine. Increased glutamine catabolism in MYC-induced liver tumors is associated with decreased levels of glutamine synthetase (Glul) and the switch from Gls2 to Gls1 glutaminase. In contrast to liver tumors, MYC-induced lung tumors display increased expression of both Glul and Gls1 and accumulate glutamine. We also show that inhibition of Gls1 kills cells that over-express MYC and catabolize glutamine. Our results suggest that the metabolic profiles of tumors are likely to depend on both the genotype and tissue of origin and have implications regarding the design of therapies targeting tumor metabolism.
Mutation at the R132 residue of isocitrate dehydrogenase 1 (IDH1), frequently found in gliomas and acute myelogenous leukemia, creates a neoenzyme that produces 2-hydroxyglutarate (2-HG) from α-ketoglutarate (α-KG). We sought to therapeutically exploit this neoreaction in mutant IDH1 cells that require α-KG derived from glutamine. Glutamine is converted to glutamate by glutaminase and further metabolized to α-KG. Therefore, we inhibited glutaminase with siRNA or the small molecule inhibitor bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and found slowed growth of glioblastoma cells expressing mutant IDH1 compared with those expressing wild-type IDH1. Growth suppression of mutant IDH1 cells by BPTES was rescued by adding exogenous α-KG. BPTES inhibited glutaminase activity, lowered glutamate and α-KG levels, and increased glycolytic intermediates while leaving total 2-HG levels unaffected. The ability to selectively slow growth in cells with IDH1 mutations by inhibiting glutaminase suggests a unique reprogramming of intermediary metabolism and a potential therapeutic strategy.
TRPM2 is a member of the transient receptor potential melastatin-related (TRPM) family of cation channels, which possesses both ion channel and ADP-ribose hydrolase functions. TRPM2 has been shown to gate in response to oxidative and nitrosative stresses, but the mechanism through which TRPM2 gating is induced by these types of stimuli is not clear. Here we show through structure-guided mutagenesis that TRPM2 gating by ADP-ribose and both oxidative and nitrosative stresses requires an intact ADP-ribose binding cleft in the Cterminal nudix domain. We also show that oxidative/ nitrosative stress-induced gating can be inhibited by pharmacological reagents predicted to inhibit NAD hydrolysis to ADP-ribose and by suppression of ADP-ribose accumulation by cytosolic or mitochondrial overexpression of an enzyme that specifically hydrolyzes ADP-ribose. Overall, our data are most consistent with a model of oxidative and nitrosative stress-induced TRPM2 activation in which mitochondria are induced to produce free ADP-ribose and release it to the cytosol, where its subsequent accumulation induces TRPM2 gating via interaction within a binding cleft in the C-terminal NUDT9-H domain of TRPM2.Eukaryotic cells have been shown to react and adapt to conditions of oxidative stress produced by disulfide-inducing chemicals, reactive oxygen species (ROS), 1 or reactive nitrogen species (RNS) through a variety of redox-sensitive signaling pathways (variously reviewed in Refs. 1-12). Recently, the TRPM2 cation channel has been shown to undergo gating in response to oxidative or nitrosative stress occurring upon ROS or RNS exposure (13,14). As TRPM2 is a novel dual function protein that possesses both ion channel and ADP-ribose hydrolase functions (15, 16), there has been great interest in understanding the molecular mechanisms through which oxidative and nitrosative stress activate TRPM2 channels, as well as the physiological role(s) of TRPM2-mediated ion fluxes and enzymatic activity in the context of cellular exposure to ROS and RNS.TRPM2 is classified as a member of the transient receptor potential melastatin-related (TRPM) ion channel family based on the homology of its Ϸ600 amino acid N-terminal domain and Ϸ300 amino acid channel-forming domain to corresponding regions of other TRPM family members. The enzymatic function of TRPM is encoded by a C-terminal domain, designated the NUDT9-homology (NUDT9-H) domain, which is homologous to the NUDT9 ADP-ribose hydrolase (15,17). In vitro studies of TRPM2 channel function using patch clamp techniques have suggested that ADP-ribose and NAD are both able to directly induce gating of full-length TRPM2 channels (14,15,18), and in vitro studies of the NUDT9-H domain demonstrate that it has a low level of ADP-ribose hydrolase activity and the apparent capacity to interact with NAD through its nudix hydrolase enzymatic motif (14, 15). However, there is a significant gap in understanding how the in vitro data on TRPM2 function relate to oxidative/nitrosative stress-induced TRPM2 gating in intact c...
The release of GA (mitochondrial glutaminase) from neurons following acute ischaemia or during chronic neurodegenerative diseases may contribute to the propagation of glutamate excitotoxicity. Thus an inhibitor that selectively inactivates the released GA may limit the accumulation of excess glutamate and minimize the loss of neurological function that accompanies brain injury. The present study examines the mechanism of inactivation of rat KGA (kidney GA isoform) by the small-molecule inhibitor BPTES [bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide]. BPTES is a potent inhibitor of KGA, but not of the liver GA isoform, glutamate dehydrogenase or gamma-glutamyl transpeptidase. Kinetic studies indicate that, with respect to glutamine, BPTES has a K(i) of approx. 3 microM. Moreover, these studies suggest that BPTES inhibits the allosteric activation caused by phosphate binding and promotes the formation of an inactive complex. Gel-filtration chromatography and sedimentation-velocity analysis were used to examine the effect of BPTES on the phosphate-dependent oligomerization of KGA. This established that BPTES prevents the formation of large phosphate-induced oligomers and instead promotes the formation of a single oligomeric species with distinct physical properties. Sedimentation-equilibrium studies determined that the oligomer produced by BPTES is a stable tetramer. Taken together, the present work indicates that BPTES is a unique and potent inhibitor of rat KGA and elucidates a novel mechanism of inactivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.