Home range estimation is routine practice in ecological research. While advances in animal tracking technology have increased our capacity to collect data to support home range analysis, these same advances have also resulted in increasingly autocorrelated data. Consequently, the question of which home range estimator to use on modern, highly autocorrelated tracking data remains open. This question is particularly relevant given that most estimators assume independently sampled data. Here, we provide a comprehensive evaluation of the effects of autocorrelation on home range estimation. We base our study on an extensive data set of GPS locations from 369 individuals representing 27 species distributed across five continents. We first assemble a broad array of home range estimators, including Kernel Density Estimation (KDE) with four bandwidth optimizers (Gaussian reference function, autocorrelated‐Gaussian reference function [AKDE], Silverman's rule of thumb, and least squares cross‐validation), Minimum Convex Polygon, and Local Convex Hull methods. Notably, all of these estimators except AKDE assume independent and identically distributed (IID) data. We then employ half‐sample cross‐validation to objectively quantify estimator performance, and the recently introduced effective sample size for home range area estimation (normalNfalse^area) to quantify the information content of each data set. We found that AKDE 95% area estimates were larger than conventional IID‐based estimates by a mean factor of 2. The median number of cross‐validated locations included in the hold‐out sets by AKDE 95% (or 50%) estimates was 95.3% (or 50.1%), confirming the larger AKDE ranges were appropriately selective at the specified quantile. Conversely, conventional estimates exhibited negative bias that increased with decreasing normalNfalse^area. To contextualize our empirical results, we performed a detailed simulation study to tease apart how sampling frequency, sampling duration, and the focal animal's movement conspire to affect range estimates. Paralleling our empirical results, the simulation study demonstrated that AKDE was generally more accurate than conventional methods, particularly for small normalNfalse^area. While 72% of the 369 empirical data sets had >1,000 total observations, only 4% had an normalNfalse^area >1,000, where 30% had an normalNfalse^area <30. In this frequently encountered scenario of small normalNfalse^area, AKDE was the only estimator capable of producing an accurate home range estimate on autocorrelated data.
Aim Biogeographical comparisons of interaction networks help to elucidate differences in ecological communities and ecosystem functioning at large scales. Neotropical ecosystems have higher diversity and a different composition of frugivores and fleshy‐fruited plants compared with Afrotropical systems, but a lack of intercontinental comparisons limits understanding of (a) whether plant–frugivore networks are structured in a similar manner, and (b) whether the same species traits define the roles of animals across continents. Location Afrotropics and Neotropics. Time period 1977–2015. Taxa Fleshy‐fruited plants and frugivorous vertebrates. Methods We compiled a dataset comprising 17 Afrotropical and 48 Neotropical weighted seed‐dispersal networks quantifying frugivory interactions between 1,091 fleshy‐fruited plant and 665 animal species, comprising in total 8,251 interaction links between plants and animals. In addition, we compiled information on the body mass of animals and their degree of frugivory. We compared four standard network‐level metrics related to interaction diversity and specialization, accounting for differences related to sampling effort and network location. Furthermore, we tested whether animal traits (body mass, degree of frugivory) differed between continents, whether these traits were related to the network roles of species and whether these relationships varied between continents. Results We found significant structural differences in networks between continents. Overall, Neotropical networks were less nested and more specialized than Afrotropical networks. At the species level, a higher body mass and degree of frugivory were associated with an increasing diversity of plant partners. Specialization of frugivores increased with the degree of frugivory, but only in the Neotropics. Main conclusions Our findings show that Afrotropical networks have a greater overlap in plant partners among vertebrate frugivores than the more diverse networks in the Neotropics that are characterized by a greater niche partitioning. Hence, the loss of frugivore species could have stronger impacts on ecosystem functioning in the more specialized Neotropical communities compared with the more generalized Afrotropical communities.
Summary1. Seed dispersal by frugivorous animals forms the basis for regeneration of numerous plant species. Habitat fragmentation has been found to be one major factor perturbing frugivore communities and dependent plant species. Yet, community-wide consequences of fragmentation for both frugivore and plant communities are still hardly understood. 2. Here, we studied the effects of habitat fragmentation on the seed removal by frugivorous birds and mammals from nine fleshy-fruited plant species in Białowie_ za Forest (Eastern Poland). This last relict of old-growth lowland forest in Europe poses an exceptional reference site for studying the impact of habitat fragmentation on seed dispersal processes in temperate forest ecosystems. 3. In particular, (i) we tested for associations between forest fragmentation and response traits of frugivores, that is forest specialization and body mass; (ii) we studied the relationship between frugivore response and effect traits, that is centrality (number of consumed plant species) and interaction type (mutualistic vs. antagonistic); and (iii) we assessed the feedback of fragmentation-induced changes on plant-frugivore interactions and seed removal rates. 4. We found that fragmentation led to shifts in the frugivore community, associated with the response traits forest specialization and body mass, with fewer forest specialists and large-bodied frugivores in fragmented than in continuous forests. However, forest generalists and small-bodied frugivores were more central in the plant-frugivore associations than forest specialists and largebodied frugivores. Therefore, the loss of vulnerable species did not result in reduced seed removal rates in fragmented compared with continuous forest. 5. Synthesis. These results indicate that seed removal may be relatively robust in spite of shifts in the frugivore community in forest fragments. The correlation between response and effect traits of frugivores highlights the importance of forest generalists and small-bodied frugivores for maintaining dispersal processes in fragmented forests in temperate regions. Yet, future studies should aim at quantifying the consequences of seed disperser loss on other aspects of dispersal, such as long-distance dispersal, spatial patterns of seed deposition, seed germination and plant regeneration.
Theory assumes that fair trade among mutualists requires highly reliable communication. In plant–animal mutualisms the reliability of cues that indicate reward quality is often low. Therefore, it is controversial whether communication allows animal mutualists to regulate their reward intake. Here we show that even loose relationships between fruit brightness and nutritional rewards (r2 = 0.11–0.35) allow birds to regulate their nutrient intake across distinct European plant–frugivore networks. Resident, over-wintering generalist frugivores that interact with diverse plant species select bright, lipid-rich fruits, whereas migratory birds select dark, sugar- and antioxidant-rich fruits. Both nutritional strategies are consistent with previous physiological experiments suggesting that over-wintering generalists aim to maximize their energy intake, whereas migrants aim to enhance the build-up of body fat, their immune response and oxidative status during migration. Our results suggest that animal mutualists require only weak cues to regulate their reward intake according to specific nutritional strategies.
Aim Animal movement is an important determinant of individual survival, population dynamics and ecosystem structure and function. Nonetheless, it is still unclear how local movements are related to resource availability and the spatial arrangement of resources. Using resident bird species and migratory bird species outside the migratory period, we examined how the distribution of resources affects the movement patterns of both large terrestrial birds (e.g., raptors, bustards and hornbills) and waterbirds (e.g., cranes, storks, ducks, geese and flamingos). Location Global. Time period 2003–2015. Major taxa studied Birds. Methods We compiled GPS tracking data for 386 individuals across 36 bird species. We calculated the straight‐line distance between GPS locations of each individual at the 1‐hr and 10‐day time‐scales. For each individual and time‐scale, we calculated the median and 0.95 quantile of displacement. We used linear mixed‐effects models to examine the effect of the spatial arrangement of resources, measured as enhanced vegetation index homogeneity, on avian movements, while accounting for mean resource availability, body mass, diet, flight type, migratory status and taxonomy and spatial autocorrelation. Results We found a significant effect of resource spatial arrangement at the 1‐hr and 10‐day time‐scales. On average, individual movements were seven times longer in environments with homogeneously distributed resources compared with areas of low resource homogeneity. Contrary to previous work, we found no significant effect of resource availability, diet, flight type, migratory status or body mass on the non‐migratory movements of birds. Main conclusions We suggest that longer movements in homogeneous environments might reflect the need for different habitat types associated with foraging and reproduction. This highlights the importance of landscape complementarity, where habitat patches within a landscape include a range of different, yet complementary resources. As habitat homogenization increases, it might force birds to travel increasingly longer distances to meet their diverse needs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.