Abstract. Ocean acidification is expected to influence plankton community structure and biogeochemical element cycles. To date, the response of plankton communities to elevated CO 2 has been studied primarily during nutrient-stimulated blooms. In this CO 2 manipulation study, we used largevolume (∼ 55 m 3 ) pelagic in situ mesocosms to enclose a natural summer, post-spring-bloom plankton assemblage in the Baltic Sea to investigate the response of organic matter pools to ocean acidification. The carbonate system in the six mesocosms was manipulated to yield average f CO 2 ranging between 365 and ∼ 1230 µatm with no adjustment of naturally available nutrient concentrations. Plankton community development and key biogeochemical element pools were subsequently followed in this nitrogen-limited ecosystem over a period of 7 weeks. We observed higher sustained chlorophyll a and particulate matter concentrations (∼ 25 % higher) and lower inorganic phosphate concentrations in the water column in the highest f CO 2 treatment (1231 µatm) during the final 2 weeks of the study period (Phase III), when there was low net change in particulate and dissolved matter pools. Size-fractionated phytoplankton pigment analyses indicated that these differences were driven by picophytoplankton (< 2 µm) and were already established early in the experiment during an initial warm and more productive period with overall elevated chlorophyll a and particulate matter concentrations. However, the influence of picophytoplankton on bulk organic matter pools was masked by high biomass of larger plankton until Phase III, when the contribution of the small size fraction (< 2 µm) increased to up to 90 % of chlorophyll a. In this phase, a CO 2 -driven increase in water column particulate carbon did not lead to enhanced sinking material flux but was instead reflected in increased dissolved organic carbon concentrations. Hence ocean acidification may induce changes in organic matter partitioning in the upper water column during the low-nitrogen summer period in the Baltic Sea.
Every year, the oceans absorb about 30% of anthropogenic carbon dioxide (CO2) leading to a re-equilibration of the marine carbonate system and decreasing seawater pH. Today, there is increasing awareness that these changes–summarized by the term ocean acidification (OA)–could differentially affect the competitive ability of marine organisms, thereby provoking a restructuring of marine ecosystems and biogeochemical element cycles. In winter 2013, we deployed ten pelagic mesocosms in the Gullmar Fjord at the Swedish west coast in order to study the effect of OA on plankton ecology and biogeochemistry under close to natural conditions. Five of the ten mesocosms were left unperturbed and served as controls (~380 μatm pCO2), whereas the others were enriched with CO2-saturated water to simulate realistic end-of-the-century carbonate chemistry conditions (~760 μatm pCO2). We ran the experiment for 113 days which allowed us to study the influence of high CO2 on an entire winter-to-summer plankton succession and to investigate the potential of some plankton organisms for evolutionary adaptation to OA in their natural environment. This paper is the first in a PLOS collection and provides a detailed overview on the experimental design, important events, and the key complexities of such a “long-term mesocosm” approach. Furthermore, we analyzed whether simulated end-of-the-century carbonate chemistry conditions could lead to a significant restructuring of the plankton community in the course of the succession. At the level of detail analyzed in this overview paper we found that CO2-induced differences in plankton community composition were non-detectable during most of the succession except for a period where a phytoplankton bloom was fueled by remineralized nutrients. These results indicate: (1) Long-term studies with pelagic ecosystems are necessary to uncover OA-sensitive stages of succession. (2) Plankton communities fueled by regenerated nutrients may be more responsive to changing carbonate chemistry than those having access to high inorganic nutrient concentrations and may deserve particular attention in future studies.
Estuaries are often seen as natural filters of riverine nitrate, but knowledge of this nitrogen sink in oligotrophic systems is limited. We measured spring and summer dinitrogen production (denitrification, anammox) in muddy and non-permeable sandy sediments of an oligotrophic estuary in the northern Baltic Sea, to estimate its function in mitigating the riverine nitrate load. Both sediment types had similar denitrification rates, and no anammox was detected. In spring at high nitrate loading, denitrification was limited by likely low availability of labile organic carbon. In summer, the average denitrification rate was ~138 μmol N m. The corresponding estuarine nitrogen removal for August was ~1.2 t, of which ~93% was removed by coupled nitrification−denitrification. Particulate matter in the estuary was mainly phytoplankton derived (> 70% in surface waters) and likely based on the riverine nitrate which was not removed by direct denitrification due to water column stratification. Subsequently settling particles served as a link between the otherwise uncoupled nitrate in surface waters and benthic nitrogen removal. We suggest that the riverine nitrate brought into the oligotrophic estuary during the spring flood is gradually, and with a time delay, removed by benthic denitrification after being temporarily 'trapped' in phytoplankton particulate matter. The oligotrophic system is not likely to face eutrophication from increasing nitrogen loading due to phosphorus limitation. In response, coupled nitrification−denitrification rates are likely to stay constant, which might increase the future export of nitrate to the open sea and decrease the estuary's function as a nitrogen sink relative to the load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.