Plasticity is a property of the nervous system that allows it to modify its response to an altered input. This capacity for change suggests that there are molecular mechanisms in neurons that can couple stimuli to long-term alterations in phenotype. Neuronal excitation elicits rapid transcriptional activation of several immediate-early genes, for example c-fos, c-jun and zif268. Many immediate-early genes encode transcription factors that control expression of downstream genes whose products are believed to bring about long-term plastic changes. Here we use a highly sensitive differential complementary DNA cloning procedure to identify genes that may participate in long-term plasticity. We cloned 52 cDNAs of genes induced by the glutamate analogue kainate in the hippocampus dentate gyrus. The number of these candidate plasticity-related genes (CPGs) is estimated to be 500-1,000. One of the cloned CPGs (16C8), encoding a protease inhibitor, is induced by a stimulus producing long-term potentiation and during dentate gyrus development; a second, cpg1, is dependent on activation of the NMDA (N-methyl-D-aspartate) receptor for induction and encodes a new small, dentate-gyrus-specific protein. Seventeen of the cloned CPGs encode known proteins, including six suggesting that strong neuronal activation leads to de novo synthesis of vesicular and other synaptic components.
Neural activity and neurotrophins induce synaptic remodeling in part by altering gene expression. A cDNA encoding a glycosylphoshatidylinositol-anchored protein was identified by screening for hippocampal genes that are induced by neural activity. This molecule, named neuritin, is expressed in postmitotic-differentiating neurons of the developing nervous system and neuronal structures associated with plasticity in the adult. Neuritin message is induced by neuronal activity and by the activity-regulated neurotrophins BDNF and NT-3. Purified recombinant neuritin promotes neurite outgrowth and arborization in primary embryonic hippocampal and cortical cultures. These data implicate neuritin as a downstream effector of activity-induced neurite outgrowth.
Long-term plasticity of the central nervous system (CNS) involves induction of a set of genes whose identity is incompletely characterized. To identify candidate plasticity-related genes (CPGs), we conducted an exhaustive screen for genes that undergo induction or downregulation in the hippocampus dentate gyrus (DG) following animal treatment with the potent glutamate analog, kainate. The screen yielded 362 upregulated CPGs and 41 downregulated transcripts (dCPGs). Of these, 66 CPGs and 5 dCPGs are known genes that encode for a variety of signal transduction proteins, transcription factors, and structural proteins. Seven novel CPGs predict the following putative functions: cpg2--a dystrophin-like cytoskeletal protein; cpg4--a heat-shock protein: cpg16--a protein kinase; cpg20--a transcription factor; cpg21--a dual-specificity MAP-kinase phosphatase; and cpg30 and cpg38--two new seven-transmembrane domain receptors. Experiments performed in vitro and with cultured hippocampal cells confirmed the ability of the cpg-21 product to inactivate the MAP-kinase. To test relevance to neural plasticity, 66 CPGs were tested for induction by stimuli producing long-term potentiation (LTP). Approximately one-fourth of the genes examined were upregulated by LTP. These results indicate that an extensive genetic response is induced in mammalian brain after glutamate receptor activation, and imply that a significant proportion of this activity is coinduced by LTP. Based on the identified CPGs, it is conceivable that multiple cellular mechanisms underlie long-term plasticity of the nervous system.
Mutations produced in Escherichia coli by apurinic sites are believed to arise via SOS-assisted translesion replication. Analysis of replication products synthesized on depurinated single-stranded DNA by DNA polymerase Ill holoenzyme revealed that apurinic sites frequently blocked in vitro replication. Bypass frequency of an apurinic site was estimated to be 10-15%. Direct evidence for replicative bypass was obtained in a complete single-stranded -+ replicative form replication system containing DNA polymerase III holoenzyme, single-stranded DNA binding protein, DNA polymerase I, and DNA ligase, by demonstrating the sensitivity of fully replicated products to the apurinic endonuclease activity of E. coli exonuclease III. Termination at apurinic sites, like termination at pyrimidine photodimers, involved dissociation of the polymerase from the blocked termini, followed by initiations at available primer templates. When no regular primer templates were available, the polymerase underwent repeated cycles of dissociation and rebinding at the blocked termini and, while bound, carried out multiple polymerization-excision reactions opposite the apurinic sites, leading to turnover of dNTPs into dNMPs. From the in vitro turnover rates, we could predict with striking accuracy the specificity of apurinic site mutagenesis, as determined in vivo in depurinated single-stranded DNA from an M13-ac hybrid phage. This fimding is consistent with the view that DNA polymerase III holoenzyme carries out the mutagenic "misinsertion" step during apurinic site mutagenesis in vivo and that the specificity of the process is determined primarily by the polymerase. SOS-induced proteins such as UmuD/C might act as processivity-like factors to stabilize the polymerase-DNA complex, thus increasing the efficiency of the next stage of past-lesion polymerization required to complete the bypass reaction.Apurinic (AP) and apyrimidinic sites are common lesions in DNA and are believed to be important intermediates in chemical carcinogenesis by a variety of chemical agents (1,2). Depurination is the most frequent spontaneous alteration in DNA under physiological conditions and occurs in vitro at the rate of 3 x 10-11 per nucleotide per sec (3). Extrapolation to the in vivo situation would suggest that 0.5 purine is lost from an Escherichia coli cell per generation, and as many as 10,000 purines are lost in each mammalian cell per day (3). Depyrimidination is much slower and occurs at rates 100 times lower than depurination (4). Exposure of cells to a variety of carcinogens leads to the formation of modified bases, some of which are converted to AP sites either because of enhanced spontaneous release (e.g., 7-methylguanine) (5) or by specific DNA glycosylases (e.g., 3-methyladenine) as part of the DNA repair processes (6). Specific DNA glycosylases form AP sites also by removing uracils or hypoxanthines misincorporated during replication or produced via deamination of cytosines or adenines, respectively (6).In E. coli, AP sites are highly mutag...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.