Pursuit-evasion is the problem of capturing mobile targets with one or more pursuers. We use deep reinforcement learning for pursuing an omni-directional target with multiple, homogeneous agents that are subject to unicycle kinematic constraints. We use shared experience to train a policy for a given number of pursuers that is executed independently by each agent at run-time. The training benefits from curriculum learning, a sweeping-angle ordering to locally represent neighboring agents and encouraging good formations with reward structure that combines individual and group rewards. Simulated experiments with a reactive evader and up to eight pursuers show that our learning-based approach, with non-holonomic agents, performs on par with classical algorithms with omni-directional agents, and outperforms their non-holonomic adaptations. The learned policy is successfully transferred to the real world in a proofof-concept demonstration with three motion-constrained pursuer drones.
Identification of falls while performing normal activities of daily living (ADL) is important to ensure personal safety and well-being. However, falling is a short term activity that occurs rarely and infrequently. This poses a challenge for traditional supervised classification algorithms, because there may be very little training data for falls (or none at all) to build generalizable models for falls. This paper proposes an approach for the identification of falls using a wearable device in the absence of training data for falls but with plentiful data for normal ADL. We propose three 'X-Factor' Hidden Markov Model (XHMMs) approaches. The XHMMs have 'inflated' output covariances (observation models). To estimate the inflated covariances, we propose a novel cross validation method to remove 'outliers' from the normal ADL that serves as proxies for the unseen falls and allow learning the XHMMs using only normal activities. We tested the proposed XHMM approaches on two activity recognition datasets and show high detection rates for falls in the absence of fall-specific training data. We show that the traditional method of choosing threshold based on maximum of negative of log-likelihood to identify unseen falls is ill-posed for this problem. We also show that supervised classification methods perform poorly when very limited fall data is available during the training phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.