Overexpression of the receptor tyrosine kinase EPH receptor A2 (EphA2) is commonly observed in aggressive breast cancer and correlates with a poor prognosis. However, while EphA2 has been reported to enhance tumorigenesis, proliferation, and MAPK activation in several model systems, other studies suggest that EphA2 activation diminishes these processes and inhibits the activity of MAPK upon ligand stimulation. In this study, we eliminated EphA2 expression in 2 transgenic mouse models of mammary carcinoma. EphA2 deficiency impaired tumor initiation and metastatic progression in mice overexpressing ErbB2 (also known as Neu) in the mammary epithelium (MMTV-Neu mice), but not in mice overexpressing the polyomavirus middle T antigen in mammary epithelium (MMTV-PyV-mT mice). Histologic and ex vivo analyses of MMTV-Neu mouse mammary epithelium indicated that EphA2 enhanced tumor proliferation and motility. Biochemical analyses revealed that EphA2 formed a complex with ErbB2 in human and murine breast carcinoma cells, resulting in enhanced activation of Ras-MAPK signaling and RhoA GTPase. Additionally, MMTV-Neu, but not MMTV-PyV-mT, tumors were sensitive to therapeutic inhibition of EphA2. These data suggest that EphA2 cooperates with ErbB2 to promote tumor progression in mice and may provide a novel therapeutic target for ErbB2-dependent tumors in humans. Moreover, EphA2 function in tumor progression appeared to depend on oncogene context, an important consideration for the application of therapies targeting EphA2. IntroductionMalignant progression of solid tumors is a complex process that involves the activation of oncogenic signaling and downregulation of tumor suppressor pathways. In addition, modulation of the tumor microenvironment, for example through neovascularization, enhances tumor cell growth and survival, promoting invasion and metastatic spread (reviewed in refs. 1-3). Oncogenic conversion, amplification, or overexpression of protooncogenes, such as those encoding cell surface receptor tyrosine kinases (RTKs) like the EGF receptor family member ErbB2, are frequently observed in human cancers and contribute to malignancy. Other pathways, such as p53 transcription factor/genome surveillance factor, negatively regulate growth, and loss of these pathway components also contributes to tumorigenesis (reviewed in refs. 3, 4). Recent evidence suggests that Eph RTKs play multiple roles in neoplastic progression, including regulation of processes intrinsic to tumor cells, and in the tumor microenvironment, such as tumor neovascularization (reviewed in refs. 5-8).
One arising challenge in the treatment of breast cancer is development of therapeutic resistance to trastuzumab, an antibody targeting the human epidermal growth factor receptor-2 (HER2) which is frequently amplified in breast cancers. In this study, we provide evidence that elevated level of the receptor tyrosine kinase EphA2 is an important contributor to trastuzumab resistance. In a screen of a large cohort of human breast cancers, we found that EphA2 overexpression correlated with a decrease in disease-free and overall survival of HER2-overexpressing patients. Trastuzumab-resistant cell lines overexpressed EphA2, whereas inhibiting EphA2 restored sensitivity to trastuzumab treatment in vivo. Notably, trastuzumab treatment could promote EphA2 phosphorylation by activating Src kinase, leading in turn to an amplification of PI3K/Akt and MAPK signaling in resistant cells. Our findings offer mechanistic insights into the basis for trastuzumab resistance and they rationalize strategies to target EphA2 as a tactic to reverse trastuzumab resistance.
qRT-PCR. Whole-tumor RNA was harvested with an RNeasy kit (QIAGEN), and cDNA was synthesized (High Capacity; Applied Biosystems) and amplified using the murine cDNA-specific primers (Integrated DNA Technologies) listed in Supplemental Methods, along with SYBR Green Supermix (Bio-Rad). The following primers were used: MRC1 (forward: 5′ CCCTCAGCAAGCGATGTGC 3′; reverse: 5′-GGATACTTGCCAGGT CCCCA-3′); iNOS (forward: 5′-GGAGCATCCCAAGTACGAGTGG-3′; reverse: 5′-CGGCC-CACTTCCTCCAG); IL10 (forward: 5′-GGCGCTGTCATC-GATTTCTCC; reverse: 5′-GGCCTTGTAGACACCTTGGTC); Tgfb1 (forward: 5′-CGCAACAACGCCATCTATGAG; reverse: 5′-CGG-GACAGCAATGGGGGTTC); IL4 (forward: 5′-GGTCACAGGAGAAGG-GACG; reverse: 5′-GCGAAGCACCTTGGAAGCC);, IL12b (forward: 5′-GGAGTGGGATGTGTCCTCAG; reverse: 5′-CGGGAGTCCAGTC-CACCTCT); CCL3 (forward: 5′-CCACTGCCCTTGCTGTTCTTCTCT; reverse: 5′-GGGTGTCAGCTCCATATGGCG); and Rplp0 (forward: 5′-TCCTATAAAAGGCACACGCGGGC; reverse: 5′-AGACGATGT-CACTCCAACGAGGACG). Target To generate apoptotic MCF7, cells were treated in suspension with 1 μm BKM120 plus 2 μm ABT-263 (both inhibitors from Selleck Chemicals) for 4 hours, washed 5 times with PBS to remove residual drug, and used directly for efferocytosis assays or for annexin V staining. For efferocytosis coculture assays, Raw264.7-GFP cells (10 4 /well) and PyVmT or MCF7 cells (72 hours after infection with Ad.mCherry and Ad.HS-V-TK) were seeded together in a monolayer in 24-well plates in 2% FBS and cultured for 24 hours prior to the addition PBS or gancyclovir. Cells were imaged at 8, 16, and 32 h after addition of gancyclovir. Cells were collected and counted under fluorescence after 32 hours of coculture. In some experiments, Raw264.7-GFP cells (10 4 / well) were seeded in a monolayer in 24-well plates and cultured for 24 hours prior to the addition of 10 3 live MCF7-mCherry or 10 3 dead MCF7-mCherry cells in serum-free media. Where indicated in the figures, BMS-777607 (1 μm) or a neutralizing goat anti-mouse MerTK antibody (AF591, 25 μg/ml; R&D Systems)(44) was added 2 hours prior to the addition of gancyclovir or 2 hours prior to the addition of dead MCF7 cells to macrophage monolayers. Live and dead MCF7 cells were similarly seeded without Raw264.7 cells as single cultures. Media were collected after 16 hours of coculture, passed through a 0.2-μm filter, and used neat (250 μl) to quantify murine IL-10 and IL-4 by ELISA (BioLegend) according to the manufacturer's protocol. Total remaining cells were collected after 16 hours of coculture, lysed, and RNA was collected using an RNeasy kit (QIAGEN). MethodsMice. All mice were inbred on an FVB background for more than 10 generations. WT FVB, MMTV PyVmT and MerTK -/-mice (67), originally referred to as Mer KD , were purchased from The Jackson Laboratory. Mice were genotyped by PCR of genomic DNA as previously described(30). Female virgin mice were randomized into 2 groups: (a) 1 group that remained virgin, and (b) 1 group that was bred from 42 to 44 days of age with WT male mice. Pregnancies were timed according to identification of a va...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.