Neglected tropical diseases (NTDs) and other diseases of the developing world, such as malaria, attract research investments that are disproportionately low compared to their impact on human health worldwide. Therefore, pragmatic methods for launching new drug discovery programs have emerged that repurpose existing chemical matter as new drugs or new starting points for optimization. In this Digest we describe applications of different repurposing approaches for NTDs, and provide a means by which these approaches may be differentiated from each other. These include drug repurposing, target repurposing, target class repurposing, and lead repurposing.
There is an increasingly urgent need for new antibiotics, yet there is a significant and persistent economic problem when it comes to developing such medicines. The problem stems from the perceived need for a “market” to drive commercial antibiotic development. In this article, we explore abandoning the market as a prerequisite for successful antibiotic research and development. Once one stops trying to fix a market model that has stopped functioning, one is free to carry out research and development (R&D) in ways that are more openly collaborative, a mechanism that has been demonstrably effective for the R&D underpinning the response to the COVID pandemic. New “open source” research models have great potential for the development of medicines for areas of public health where the traditional profit-driven model struggles to deliver. New financial initiatives, including major push/pull incentives, aimed at fixing the broken antibiotics market provide one possible means for funding an openly collaborative approach to drug development. We argue that now is therefore the time to evaluate, at scale, whether such methods can deliver new medicines through to patients, in a timely manner.
Lapatinib, an approved EGFR inhibitor, was explored as a starting point for the synthesis of new hits against Trypanosoma brucei, the causative agent of human African trypanosomiasis (HAT). Previous work culminated in 1 (NEU-1953), which was part of a series typically associated with poor aqueous solubility. In this report, we present various medicinal chemistry strategies that were used to increase the aqueous solubility and improve the physicochemical profile without sacrificing anti-trypanosome potency. To rank trypanocidal hits, a new assay (summarized in a *
In only a matter of months, the coronavirus disease of 2019 (COVID-19) has spread around the world. The global impact of the disease has caused significant and repeated calls for quick action towards new medicines and vaccines. In response, researchers have adopted open science methods to begin to combat this disease via global collaborative efforts. We summarise here some of those initiatives, and have created an updateable list to which others may be added. Though open science has previously been shown as an accelerator of biomedical research, the COVID-19 crisis has made openness seem the logical choice. Will openness persist in the discovery of new medicines, after the crisis has receded?
Utilizing a target repurposing and
parasite-hopping approach, we
tested a previously reported library of compounds that were active
against Trypanosoma brucei, plus 31 new compounds,
against a variety of protozoan parasites including Trypanosoma
cruzi, Leishmania major, Leishmania donovani, and Plasmodium falciparum. This led to the discovery
of several compounds with submicromolar activities and improved physicochemical
properties that are early leads toward the development of chemotherapeutic
agents against kinetoplastid diseases and malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.