Recombination rate is a complex trait, with genetic and environmental factors shaping observed patterns of variation. Although recent studies have begun to unravel the genetic basis of recombination rate differences between organisms, less attention has focused on the environmental determinants of crossover rates. Here, we test the effect of one ubiquitous environmental pressure–bacterial infection–on global recombination frequency in mammals. We applied MLH1 mapping to assay global crossover rates in male mice infected with the pathogenic bacterium Borrelia burgdorferi, the causative agent of Lyme Disease, and uninfected control animals. Despite ample statistical power to identify biologically relevant differences between infected and uninfected animals, we find no evidence for a global recombination rate response to bacterial infection. Moreover, broad-scale patterns of crossover distribution, including the number of achiasmate bivalents, are not affected by infection status. Although pathogen exposure can plastically increase recombination in some species, our findings suggest that recombination rates in house mice may be resilient to at least some forms of infection stress. This negative result motivates future experiments with alternative house mouse pathogens to evaluate the generality of this conclusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.