Cancer is the second leading cause of mortality worldwide. The study of DNA tumor-inducing viruses and their oncoproteins as a causative agent in cancer initiation and tumor progression has greatly enhanced our understanding of cancer cell biology. The initiation of oncogenesis is a complex process. Specific gene mutations cause functional changes in the cell that ultimately result in the inability to regulate cell differentiation and proliferation effectively. The human neurotropic Polyomavirus JC (JCV) belongs to the family Polyomaviridae and it is the causative agent of progressive multifocal leukoencephalopathy (PML), which is a fatal neurodegenerative disease in an immunosuppressed state. Sero-epidemiological studies have indicated JCV infection is prevalent in the population (85%) and that initial infection usually occurs during childhood. The JC virus has small circular, double-stranded DNA that includes coding sequences for viral early and late proteins. Persistence of the virus in the brain and other tissues, as well as its potential to transform cells, has made it a subject of study for its role in brain tumor development. Earlier observation of malignant astrocytes and oligodendrocytes in PML, as well as glioblastoma formation in non-human primates inoculated with JCV, led to the hypothesis that JCV plays a role in central nervous system (CNS) tumorigenesis. Some studies have reported the presence of both JC viral DNA and its proteins in several primary brain tumor specimens. The discovery of new Polyomaviruses such as the Merkel cell Polyomavirus, which is associated with Merkel cell carcinomas in humans, ignited our interest in the role of the JC virus in CNS tumors. The current evidence known about JCV and its effects, which are sufficient to produce tumors in animal models, suggest it can be a causative factor in central nervous system tumorigenesis. However, there is no clear association between JCV presence in CNS and its ability to initiate CNS cancer and tumor formation in humans. In this review, we will discuss the correlation between JCV and tumorigenesis of CNS in animal models, and we will give an overview of the current evidence for the JC virus’s role in brain tumor formation.
Rodent cells immortalized by the EIA gene of nononcogenic adenoviruses are susceptible to lysis by natural killer (NK) cells and activated macrophages. This cytolysis-susceptible phenotype may contribute to the rejection of adenovirus-transformed cells by immunocompetent animals. Such increased cytolytic susceptibility has also been observed with infected rodent cells. This infection model provided a means to study the role of ElA gene products in induction of cytolytic susceptibility without cell selection during transformation. Deletion mutations outside of the ElA gene had no effect on adenovirus type 2 (Ad2) or Ad5 induction of cytolytic susceptibility in infected hamster cells, while ElA-minus mutant viruses could not induce this phenotype. ElA mutant viruses that induced expression of either ElA 12S or 13S mRNA in infected cells were competent to induce cytolytic susceptibility. Furthermore, there was a correlation between the accumulation of ElA gene products in Ad5-infected cells and the level of susceptibility of such target cells to lysis by NK cells. The results of coinfection studies indicated that the EIA gene products of highly oncogenic Adl2 could not complement the lack of induction of cytolytic susceptibility by ElA-minus AdS virus in infected cells and also could not block induction of this infected-cell phenotype by AdM. These data suggest that expression of the ElA gene of nononcogenic adenoviruses may cause the elimination of infected cells by the immunologically nonspecific host inflammatory cell response prior to cellular transformation. The lack of induction of this cytolysis-susceptible phenotype by Adl2 ElA may result in an increased persistence of Adl2-infected cells in vivo and may lead to an increased Adl2-transformed cell burden for the host. Resistance of experimental animals and humans to virus infection involves a diverse array of factors, including host * Corresponding author.
Polyomavirus JC (JCPyV) causes the demyelinating disease progressive multifocal leukoencephalopathy (PML). JCPyV infection is very common in childhood and, under conditions of severe immunosuppression, JCPyV may reactivate to cause PML. JC viral proteins expression is regulated by the JCPyV non-coding control region (NCCR), which contains binding sites for cellular transcriptional factors which regulate JCPyV transcription. Our earlier studies suggest that JCPyV reactivation occurs within glial cells due to cytokines such as TNF-α which stimulate viral gene expression. In this study, we examined interferon-α (IFNα) or β (IFNβ) which have a negative effect on JCPyV transcriptional regulation. We also showed that these interferons induce the endogenous liver inhibitory protein (LIP), an isoform of CAAT/enhancer binding protein beta (C/EBPβ). Treatment of glial cell line with interferons increases the endogenous level of C/EBPβ-LIP. Furthermore, we showed that the negative regulatory role of the interferons in JCPyV early and late transcription and viral replication is more pronounced in the presence of C/EBPβ-LIP. Knockdown of C/EBPβ-LIP by shRNA reverse the inhibitory effect on JCPyV viral replication. Therefore, IFNα and IFNβ negatively regulate JCPyV through induction of C/EBPβ-LIP, which together with other cellular transcriptional factors may control the balance between JCPyV latency and activation.
The EIA oncogene of adenovirus serotypes 2 and 5 induces susceptibility to the cytolytic effects of natural killer lymphocytes and activated macrophages when expressed in infected and transformed mammalian cells (cytolysis-susceptible phenotype). ElA and the oncogenes v-myc, long-terminal-repeat-promoted c-myc, and activated c-ras share the ability to immortalize transfected low-passage rodent cells. The cytolytic phenotypes of well-characterized rodent cell lines immortalized by these three oncogenes were defined. In contrast to target cells expressing the intact EIA gene, mycand ras-expressing, immortalized primary transfectants were resistant to lysis by both types of killer cell populations. The same patterns of susceptibility (ElA) and resistance (myc and ras) to cytolysis were observed in oncogene-transfected continuous rat (REF52) and mouse (NIH 3T3) cell lines, indicating that differences in the cytolytic phenotypes associated with expression of these oncogenes are not due to cell selection during immortalization. The results suggest that the EIA oncogene may possess a functional domain that is different from those of other oncogenes, such as myc and ras, and that the activity linked to this postulated domain is dissociable from the process of immortalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.