Tick-borne encephalitis (TBE) virus has a highly focal distribution through Eurasia. Endemic cycles appear to depend on the transmission of non-systemic infections between ticks co-feeding on the same rodent hosts. The particular features of seasonal dynamics and infestation patterns of larval and nymphal Ixodes ricinus, but not Dermacentor reticulatus, from 4 regions within TBE foci in Slovakia, are such as to promote TBE virus transmission. The distributions of larvae and nymphs on their principal rodent hosts are highly aggregated and, rather than being independent, the distributions of each stage are coincident so that the same ca. 20% of hosts feed about three-quarters of both larvae and nymphs. This results in twice the number of infectible larvae feeding alongside potentially infected nymphs compared with the null hypothesis of independent distributions. Overall, co-feeding transmission under these circumstances brings the reproductive number (R0) for TBE virus to a level that accounts quantitatively for maintained endemic cycles. Essential for coincident aggregated distributions of larvae and nymphs is their synchronous seasonal activity. Preliminary comparisons support the prediction of a greater degree of coincident seasonality within recorded TBE foci than outside. This identifies the particular climatic factors that permit such patterns of tick seasonal dynamics as the primary predictors for the focal distribution of TBE.
While niche-based processes have been invoked extensively to explain the structure of interaction networks, recent studies propose that neutrality could also be of great importance. Under the neutral hypothesis, network structure would simply emerge from random encounters between individuals and thus would be directly linked to species abundance. We investigated the impact of species abundance distributions on qualitative and quantitative metrics of 113 host-parasite networks. We analyzed the concordance between neutral expectations and empirical observations at interaction, species, and network levels. We found that species abundance accurately predicts network metrics at all levels. Despite host-parasite systems being constrained by physiology and immunology, our results suggest that neutrality could also explain, at least partially, their structure. We hypothesize that trait matching would determine potential interactions between species, while abundance would determine their realization.
Patterns of species richness, prevalence and abundance of ectoparasites have rarely been investigated at both the levels of populations and species of hosts. Here, we investigated the effects in changes in small mammal density on species richness, abundance and prevalence of ectoparasitic fleas. The comparative analyses were conducted for different small mammal species and among several populations during a long-term survey. We tested the hypothesis that an increase in host density should be linked with an increase in parasite species richness both among host species and among populations within host species, as predicted by epidemiological models. We also used host species density data from literature. We found that host density has a major influence on the species richness of ectoparasite communities of small mammals among host populations. We found no relationship between data of host density from the literature and parasite species richness. In contrast with epidemiological hypotheses, we found no relationships between abundance, or prevalence, and host density, either among host species or among host populations. Moreover, a decrease in abundance of fleas in relation with an increase in host density was observed for two mammal species (Apodemus agrarius and A. flavicollis). The decrease or the lack of increase in flea abundance in relation with an increase in host density suggests anti-parasitic behavioural activities such as grooming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.