Milk and dairy products are considered the main sources of saturated fatty acids, which are a valuable source of nutrients in the human diet. Fat composition can be adjusted through guided nutrition of dairy animals but also through selective breeding. Recently, a dinucleotide substitution located in the exon 8 of the gene coding for acyl CoA: diacylglycerol acyltransferase 1 (DGAT1), that alters the amino acid sequence from a lysine to an alanine (p.Lys232Ala) in the mature protein, was shown to have a strong effect on milk fat content in some cattle breeds. Therefore, the objectives of this work were to study the occurrence of the DGAT1 p.Lys232Ala polymorphism in Romanian Holstein cattle and Romanian Buffalo breeds and to further investigate its possible influence on fat percentage and fatty acid profiles. The results obtained in this study show that in Romanian Holstein cattle the K allele is associated with increased fat percentage and higher levels of C16:0 and C18:0 fatty acids. The ratio of saturated fatty acids versus unsaturated fatty acids (SFA/UFA) was also higher in KK homozygous individuals, whereas the fractions of C14:0, unsaturated C18 decreased. The DGAT1 p.Lys232Ala polymorphism revealed a high genetic variance for fat percentage, unsaturated C18, C16:0, and SFA/UFA. Although the effect of this polymorphism was not so evident for short chain fatty acids such as C4:0-C8:0, it was significant for C14:0 fatty acids. We concluded that selective breeding of carriers of the A allele in Romanian Holsteins can contribute to improvement in unsaturated fatty acids content of milk. However, in buffalo, the lack of the A allele makes selection inapplicable because only the K allele, associated with higher saturated fatty acids contents in milk, was identified.
BackgroundFoodborne toxoplasmosis in humans can be due to the exposure to tissue cysts of Toxoplasma gondii through the consumption of meat, including pork, of infected animals. Traditional Romanian food habits include pork as the preferred meat, while backyard pig rearing remains a common practice in many rural areas of Romania. The aims of the present study were to estimate the prevalence of T. gondii infection in naturally infected backyard pigs slaughtered for familial consumption and to genetically characterize the T. gondii strains obtained.MethodsPaired blood and heart samples were collected from 94 backyard pigs, home slaughtered for private consumption. Serum samples were analyzed using the immunofluorescence antibody test (IFAT) for anti-T. gondii antibody detection. Heart samples were screened by polymerase chain reaction (PCR) targeting the 529-bp repeat region (REP529) for T. gondii detection. In addition, heart samples from IFAT positive animals were bioassayed in mice. The T. gondii isolates were genotyped by the analysis of 15 microsatellite markers.ResultsThe results showed that almost half of the pigs investigated were T. gondii seropositive (46.8%, 95% confidence interval (CI): 36.4–57.4%) and in more than a quarter of the pigs (26.6%, 95% CI: 18.0–36.7%), the parasite was detected by PCR. Three (3/44) T. gondii strains were isolated from hearts of seropositive pigs and they all belonged to genotype II.ConclusionsThe present study showed the presence of T. gondii infection in backyard pigs in Romania, which suggests that consumption of pork from animals reared and slaughtered at home may pose a potential threat to human health and should be given attention. In addition, to our knowledge, this is the first study to provide data concerning T. gondii strains circulating in pigs from Romania.
Taking into account the advantages of Maximum Likelihood Method (most precise estimation), the statistical properties of MLEs (unbiasedness, consistency, efficiency, invariance, asymptotic normality) this paper aim is to present MLE in the context of estimate the recombination fraction r in linkage analysis. Maximum Likelihood Method follows some steps: specifies the likelihood function; takes derivatives of likelihood with respect to the parameters; sets the derivatives equal to zero and finally generates a likelihood equation, that maximized provides the most precise estimation of the recombination fraction. Generally, it is solved by iterative procedures, if no, closed form solution exists for likelihood equation. In this work we discuss comparatively two iterative optimization methods useful in computing MLE of the recombination fraction: Newton-Raphson method and Fisher's Method of Scoring. We implemented these two methods in Maple application and we illustrated them by an example: the estimation of the recombination fraction in the case of the Morgan (1909) experiment on fruit flies. The Maple code for these two methods connected with the Morgan example is given in the appendix. We can not guarantee which of the two presented methods give us an optimal maximum.
The data presented in this article is included in a larger research regarding the improvement of the Romanian lamb towards the meat production. The study has been carried out from 2015 to 2016. The lambs included in this study were obtained following a protocol of estrus synchronization in Tsurcana ewes and the grouped lambing. The research is a pilot study conducted on a representative sample for the selected groups of animals and further research is needed to complete the research. The research aims to compare carcass characteristics of purebred Tsurcana lambs and Tsurcana crossed with Vendeen lambs. The criteria assessed were: the chemical composition of purebred and crossbred meat, the live body weight, the slaughtering performance and the weight of different carcass cuts. For almost all criteria chosen the crossbred individuals recorded better results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.