Abstract.In this work we clarify the global geometrical phenomena corresponding to the notion of center for plane quadratic vector fields. We first show the key role played by the algebraic particular integrals of degrees less than or equal to three in the theory of the center: these curves control the changes in the systems as parameters vary. The bifurcation diagram used to prove this result is realized in the natural topological space for the situation considered, namely the real four-dimensional projective space. Next, we consider the known four algebraic conditions for the center for quadratic vector fields. One of them says that the system is Hamiltonian, a condition which has a clear geometric meaning. We determine the geometric meaning of the remaining other three algebraic conditions (I), (II), (III). We show that a quadratic system with a weak focus F , possessing algebraic particular integrals not passing through F of the following types, satisfies in some coordinate axes the condition (I), (II) or (III) respectively and hence has a center at F : either a parabola and an irreducible cubic particular integral having only one point at infinity, coinciding with the one of the parabola; or a straight line and an irreducible conic curve; or distinct straight lines (possibly with complex coefficients). We show that each one of these geometric properties is generic for systems satisfying the corresponding algebraic condition for the center. Another version of this result in terms of real algebraic curves is given. These results make clear the many facets of the problem of the center in the quadratic case, in particular the question of integrability and form a basis for analogous investigations for the general problem of the center for cubic systems.
In this article we give a complete global classification of the class QS ess of planar, essentially quadratic differential systems (i.e. defined by relatively prime polynomials and whose points at infinity are not all singular), according to their topological behavior in the vicinity of infinity. This class depends on 12 parameters but due to the action of the affine group and re-scaling of time, the family actually depends on five parameters. Our classification theorem (Theorem 7.1) gives us a complete dictionary connecting very simple integer-valued invariants which encode the geometry of the systems in the vicinity of infinity, with algebraic invariants and comitants which are a powerful tool for computer algebra computations helpful in the route to obtain the full topological classification of the class QS of all quadratic differential systems.
Planar quadratic differential systems occur in many areas of applied mathematics. Although more than one thousand papers were written on these systems, a complete understanding of this class is still missing. Classical problems, and in particular, Hilbert's 16th problem [Hilbert, 1900, 1902], are still open for this class. In this article we make an interdisciplinary global study of the subclass [Formula: see text] which is the closure within real quadratic differential systems, of the family QW2 of all such systems which have a weak focus of second order. This class [Formula: see text] also includes the family of all quadratic differential systems possessing a weak focus of third order and topological equivalents of all quadratic systems with a center. The bifurcation diagram for this class, done in the adequate parameter space which is the three-dimensional real projective space, is quite rich in its complexity and yields 373 subsets with 126 phase portraits for [Formula: see text], 95 for QW2, 20 having limit cycles but only three with the maximum number of limit cycles (two) within this class. The phase portraits are always represented in the Poincaré disc. The bifurcation set is formed by an algebraic set of bifurcations of singularities, finite or infinite and by a set of points which we suspect to be analytic corresponding to global separatrices which have connections. Algebraic invariants were needed to construct the algebraic part of the bifurcation set, symbolic computations to deal with some quite complex invariants and numerical calculations to determine the position of the analytic bifurcation set of connections. The global geometry of this class [Formula: see text] reveals interesting bifurcations phenomena; for example, all phase portraits with limit cycles in this class can be produced by perturbations of symmetric (reversible) quadratic systems with a center. Many other nonlinear phenomena displayed here form material for further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.