BackgroundMyocardial infarction is the most common cause of heart failure. MI has been intricately linked to ventricular remodeling, subsequently leading to the reduction in the cardiac ejection fraction causing HF. The cumulative line of evidence suggests an important role of several biomarkers in modulating the cardiac vasculature, further contributing towards the progression of post-MI complications. Studies have demonstrated, yet not fully established, that an important biomarker, IL-10, has a causal relationship with MI and associated cardiac dysfunction.HypothesisThis study aims to establish the role of IL-10 as a prognostic marker for the cardiovascular outcomes and to develop a panel of biomarkers and circulating miRNAs that could potentially result in the early detection of HF resulting from MI, allowing for early intervention strategies.Methods and resultsBlood was withdrawn and echocardiography assessment was performed on a total of 43 patients that were enrolled, within 24 hours of the incidence of MI. Patients were divided in three main groups, based on the ejection fraction measurement from echocardiography: control (n = 14), MI with normal EF (MI+NEF, n = 13) and MI with low EF (MI+LEF, n = 16). Our results showed that TGFβ-1, TNF-α, IL-6 and MMP-9 were upregulated significantly in MI+NEF group and more so in MI+LEF group, as compared to control group (p<0.01). The circulating levels of miR-34a, miR-208b and miR-126 were positively correlated and showed elevated levels in the MI+NEF group, even higher in MI+LEF group, while levels of miR-24 and miR-29a were reduced in MI+NEF, and much lower in MI+LEF, as compared to the control group (p<0.01). Our results also demonstrated a direct correlation of IL-10 with the ejection fraction in patients with MI: IL-10 was elevated in MI+NEF group, however, the levels were significantly low in MI+LEF group suggesting an important role of IL-10 in predicting heart failure. Importantly, our study confirmed the correlation of IL-10 with EF by our follow-up echocardiography assessment that was performed 2 months after the incidence of MI.ConclusionOur results support the clinical application of these serum biomarkers to develop a panel for appropriate prognosis and management of adverse cardiac remodeling and development of heart failure post-myocardial infarction.
Non-Alcoholic Fatty Liver Disease (NAFLD) has been recognized as the most common liver disorder in developed countries. NAFLD progresses from fat accumulation in hepatocytes to steatohepatitis to further stages of fibrosis and cirrhosis. Simple steatosis, i.e. fat deposition in the liver, is considered benign and gives way to non-alcoholic steatohepatitis (NASH) with a higher probability of progressing to cirrhosis, and liver-related mortality. Evidence has been found that this progression has been associated with marked alterations in hepatocyte histology and a shift in marker expression of healthy hepatocytes including increased expression of peroxisome proliferator-activated receptor gamma (PPARγ), adipocyte protein (aP2), CD36, interleukin-6 (IL-6), interleukin-18 (IL-18) and adiponectin. This progression shares much in common with the obesity phenotype, which involves a transformation of adipocytes from small, healthy cells to large, dysfunctional ones that contribute to redox imbalance and the progression of metabolic syndrome. Further, activation of Src/ERK signaling via the sodium potassium adenosine triphosphatase (Na/K-ATPase) α-1 subunit in impaired hepatocytes may contribute to redox imbalance, exacerbating the progression of NAFLD. This review hypothesizes that an adipogenic transformation of hepatocytes propagates redox imbalance and that the processes occurring in adipogenesis become activated in fat-laden hepatocytes in liver, thereby driving progression to NAFLD. Further, this review discusses therapeutic interventions to reverse NAFLD including the thiazolidinediones (TZDs) and a variety of antioxidant species. The peptide, pNaKtide, which is an antagonist of Na/K-ATPase signaling, is also proposed as a potential pharmacologic option for reducing reactive oxygen species (ROS) and reversing NAFLD by inhibiting the Na/K-ATPase-modulated ROS amplification loop.
Objectives: Metabolic syndrome causes complications like cardiovascular disease and type 2 diabetes mellitus (T2DM). As metabolic syndrome develops, altered levels of cytokines and microRNAs (miRNA) are measurable in the circulation. We aimed to construct a panel detecting abnormal levels of cytokines and miRNAs in patients at risk for metabolic syndrome. Methods: Participants included 54 patients from a Family Medicine Clinic at Marshall University School of Medicine, in groups of: Control, Obese, and Metabolic Syndrome (MetS). Results: Serum levels of leptin, adiponectin, leptin: adiponectin ratio, IL-6, six miRNAs (320a, 197-3p, 23-3p, 221-3p, 27a-3p, and 130a-3p), were measured. Among the three groups, leptin, and leptin: adiponectin ratio, and IL-6 levels were highest in MetS, and levels in Obese were greater than Control (p>0.05). Adiponectin levels were lower in Obese compared to Control, but lowest in MetS (p<0.05). MiRNAs levels were lowest in MetS, and levels in Obese were lower than Control (p>0.05). Conclusion: Our results support the clinical application of biomarkers in diagnosing early stage MetS, which will enable attenuation of disease progression before onset of irreversible complications. Since West Virginians are high-risk for developing MetS, our biomarker panel could reduce the disease burden on our population.
Hepcidin, a phase II reactant secreted by hepatocytes, regulates cellular iron levels by increasing internalization of ferroportin-a transmembrane protein facilitating egress of cellular iron. Chronic low-grade inflammatory states, such as obesity, have been shown to increase oxidative stress and enhance hepcidin secretion from hepatocytes and macrophages. Heme-heme oxygenase (HO) is a stress response system which reduces oxidative stress. We investigated the effects of HO-1 induction on hepatic hepcidin levels and on iron homeostasis in hepatic tissues from lean and obese mice. Obese mice exhibited hyperglycemia (p < 0.05); increased levels of proinflammatory cytokines (MCP-1, IL-6, p < 0.05); oxidative stress (p < 0.05); and increased hepatic hepcidin levels (p < 0.05). Enhancement of hepcidin was reflected in the reduced expression of ferroportin in obese mice (p < 0.05). However, this effect is accompanied by a significant decline in ferritin expression. Additionally, there are reduced insulin receptor phosphorylation and attenuation of metabolic regulators pAMPK, pAKT, and pLKB1. Cobalt protoporphyrin- (CoPP-) induced HO-1 upregulation in obese mice reversed these alterations (p < 0.05), while attenuating hepatic hepcidin levels. These effects of CoPP were prevented in obese mice concurrently exposed to an inhibitor of HO (SnMP) (p < 0.05). Our results highlight a modulatory effect of HO on iron homeostasis mediated through the suppression of hepatic hepcidin.
Non-alcoholic fatty liver disease (NAFLD) is a disease characterized by a steatosis of the liver that may progress to more serious pathological conditions including: nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. As the prevalence of NAFLD has increased worldwide in recent years, pathophysiology and risk factors associated with disease progression of NAFLD are at the focus of many studies. NAFLD is related to and shares common serum biomarkers with cardiovascular disease (CVD), type 2 diabetes mellitus (T2DM), obesity, and metabolic syndrome (MetS). West Virginia (WV) is a state with some of the highest rates of CVD, obesity and diabetes mellitus. As NAFLD is closely related to these diseases, it is of particular interest in WV. Currently there is no cost-effective, standardized method used clinically to detect NAFLD prior to the onset of reversible complications. At this time, the diagnosis of NAFLD is made with costly radiologic studies and invasive biopsy. These studies are only diagnostic once changes to hepatic tissue have occurred. The diagnosis of NAFLD by traditional methods may not allow for successful intervention and may not be readily available in areas with already sparse medical resources. In this literature review, we identify a list of biomarkers common among CVD, T2DM, obesity, MetS and NAFLD. From this research we propose the following biomarkers are good candidates for inclusion in a panel of biomarkers for the early detection of NAFLD: adiponectin, AST, ALT, apo-B, CK18, CPS1, CRP, FABP-1, ferritin, GGT, GRP78, HDL-C, IGF-1, IL-1β, 6, 8, 10, IRS-2PAI-1, leptin, lumican, MDA SREBP-1c and TNF-α. Creating and implementing a biomarker panel for the early detection and attenuation of NAFLD, prior to the onset of irreversible complication would provide maximum benefit and decrease the disease burden on the patients and healthcare system of WV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.