The possibility of maturing human primordial follicles in vitro would assist fertility restoration without the danger of reseeding malignancies. Leukaemia inhibitory factor (LIF) and certain culture matrices may promote human follicular growth. The present study compared human primordial follicular growth on novel culture matrices, namely human recombinant vitronectin (hrVit), small intestine submucosa (SIS), alginate scaffolds and human recombinant virgin collagen bioengineered in tobacco plant lines (CollPlant). The frozen-thawed ovarian samples that were used had been obtained from girls or young women undergoing fertility preservation. In the first part of the study, 20 samples were cultured for 6 days on hrVit or SIS with basic culture medium alone or supplemented with one of two concentrations of LIF (10ngmL and 100ngmL), with and without LIF-neutralising antibody. In the second part of the study, 15 samples were cultured for 6 days on alginate scaffolds or CollPlant matrices with basic culture medium. Follicular development was assessed by follicular counts and classification, Ki67 immunohistochemistry and 17β-oestradiol and anti-Müllerian hormone measurements in spent media samples. Primordial follicular growth was not enhanced by LIF. Despite some significant differences among the four matrices, none appeared to have a clear advantage, apart from significantly more Ki67-stained follicles on alginate and CollPlant matrices. Further studies of other culture matrices and medium supplements are needed to obtain an optimal system.
Purpose To investigate if human ovarian grafting with pure virgin human recombinant collagen type-1 from bioengineered plant lines (CollPlant™) or small intestine submucosa (SIS) yields better implantation results for human ovarian tissue and which method benefits more when combined with the host melatonin treatment and graft incubation with biological glue + vitamin E + vascular endothelial growth factor-A. Methods Human ovarian tissue wrapped in CollPlant or SIS was transplanted into immunodeficient mice with/without host/graft treatment. The tissue was assessed by follicle counts (including atretic), for apoptosis evaluation by terminal deoxynucleotidyl transferase assay and for immunohistochemical evaluation of neovascularization by platelet endothelial cell adhesion molecule (PECAM) expression, and for identification of proliferating granulosa cells by Ki67 expression. Results Human ovarian tissue transplanted with CollPlant or SIS fused with the surrounding tissue and promoted neovascularization. In general, implantation with CollPlant even without additives promoted better results than with SIS: significantly higher number of recovered follicles, significantly fewer atretic follicles, and significantly more granulosa cell proliferation. Moreover, results with CollPlant alone seemed to be at least as good as those after host and graft treatments. Conclusions CollPlant is a biomaterial without any potential risks, and grafting ovarian tissue with CollPlant is easy and the procedure may be easily modified, with limited or no foreseeable risks, for auto-transplantation in cancer survivors. Further studies are needed using other novel methods capable of enhancing neovascularization and reducing apoptosis and follicle atresia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.