Recombineering, in vivo genetic engineering using the bacteriophage λ Red generalized recombination system, was used to create various modifications of a multicopy plasmid derived from pBR322. All genetic modifications possible on the E. coli chromosome and on bacterial artificial chromosomes (BACs) are also possible on multicopy plasmids and are obtained with similar frequencies to their chromosomal counterparts, including creation of point mutations (5-10% unselected frequency), deletions and substitutions. Parental and recombinant plasmids are nearly always present as a mixture following recombination, and circular multimeric plasmid molecules are often generated during the recombineering. Keywordsphage λ Red homologous recombination; multicopy plasmid; plasmid multimers; in vivo genetic engineering
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.