The paper reports on monitoring methylmalonic aciduria (MMA)-specific and non-specific metabolites via NMR urinomics. Five patients have been monitored over periods of time; things involved were diet, medication and occasional episodes of failing to comply with prescribed diets. An extended dataset of targeted metabolites is presented, and correlations with the type of MMA are underlined. A survey of previous NMR studies on MMA is also presented.
Duplications of chromosome 8p lead to rare genetic conditions characterized by variable phenotypes. 8p21 and 8p23 duplications were associated with mental retardation but only 8p23 duplication was associated with heart defects. 8p22→ p21.3 duplications were associated with an autism spectrum disorder in several cases. We present a rare case with a de novo duplication of the entire 8p21.3→ p23.3 region, documented by karyotype, FISH, and array CGH, with t(4;8)(q35;p21.3) translocation in a 7 years-old girl. She was referred for genetic counseling at the age of 20 months due to mild dysmorphic facial features, psychomotor retardation, and a noncyanotic heart defect. Another examination carried out at the age of 5 years, enabled the diagnosis of autism spectrum disorder and attention deficit hyperactivity disorder. Upon re-examination after two years she was diagnosed with autism spectrum disorder, attention deficit hyperactivity disorder, liminal intellect with cognitive disharmony, delay in psychomotor acquisitions, developmental language delay, an instrumental disorder, and motor coordination disorder. Cytogenetic analysis using GTG technique revealed the following karyotype: 46,XX,der(4),t(4;8)(q35;p21.3). The translocation of the duplicated 8pter region to the telomeric region 4q was confirmed by FISH analysis (DJ580L5 probe). Array CGH showed: arr[GRCh37]8p23.3p21.3(125733_22400607)×3. It identified a terminal duplication, a 22.3 Mb copy number gain of chromosome 8p23.3-p21.3, between 125,733 and 22,400,607. In this case, there is a de novo duplication of a large chromosomal segment, which was translocated to chromosome 4q. Our report provides additional data regarding neuropsychiatric features in chromosome 8p duplication. The phenotypic consequences in our patient allow clinical-cytogenetic correlations and may also reveal candidate genes for the phenotypic features.
Key Clinical MessageVarious chromosomal anomalies including small supernumerary marker chromosome (sSMC) and Uniparental disomy (UPD) have been described in association with intellectual disability and autism spectrum disorder. Based on our reported findings, we recommend that patients with sSMC(8) be evaluated for autism spectrum disorder (ASD) for early institution of therapy. In the presence of an identifiable sSMC, exploration of UPD is also recommended to further investigate the role of chromosome 8 UPD in ASD.
Background and Objective: Although Down syndrome is the most frequent aneuploidy, its pathogenic molecular mechanisms are not yet fully understood. The aim of our study is to quantify—by qRT-PCR—the expression levels of both the mature forms and the pri-miRNAs of the microRNAs resident on chromosome 21 (miR(21)) in the amniotic fluid samples from Down syndrome singleton pregnancies and to estimate the impact of the differentially expressed microRNAs on Down syndrome fetal heart and amniocytes transcriptomes. Materials and methods: We collected amniotic fluid samples harvested by trained obstetricians as part of the second trimester screening/diagnostic procedure for aneuploidies to assess the trisomy 21 status by QF-PCR and karyotyping. Next, we evaluated—by Taqman qRT-PCR—the expression levels of both the mature forms and the pri-miRNA precursors of the microRNAs resident on chromosome 21 in amniotic fluid samples from singleton Down syndrome and euploid pregnancies. Further, we combined miRWalk 3.0 microRNA target prediction with GEO DataSets analysis to estimate the impact of hsa-miR-99a abnormal expression on Down syndrome heart and amniocytes transcriptome. Results: We found a statistically significant up-regulation of the mature form of miR-99a, but not pri-miR-99a, in the amniotic fluid samples from Down syndrome pregnancies with female fetuses. GATHER functional enrichment analysis of miRWalk3.0-predicted targets from Down syndrome amniocytes and fetal hearts transcriptome GEODataSets outlined both focal adhesion and cytokine–cytokine receptor interaction signaling as novel signaling pathways impacted by miR-99a and associated with cardiac defects in female Down syndrome patients. Conclusions: The significant overexpression of miR-99a, but not pri-miR-99a, points towards an alteration of the post-transcriptional mechanisms of hsa-miR-99a maturation and/or stability in the female trisomic milieu, with a potential impact on signaling pathways important for proper development of the heart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.