Highlights
Light scattering by complex-shaped large particles is investigated in laboratory.
The scattering matrix of airborne ragweed pollen is measured as a case study.
A (VIS, IR) polarimeter has hence been built and validated on spherical particles.
The (VIS, IR) spectral dependence of the ragweed scattering matrix is revealed.
Observations of new particle formation events in free troposphere are rather seldom and limited in time and space, mainly due to the complexity and the cost of the required on-board instrumentation for airplane field campaigns. In this paper, a calibrated (UV, VIS) polarization elastic lidar (2β + 2δ) is used to remotely sense new particle formation events in the free troposphere in the presence of mineral dust particles. Using very efficient (UV, VIS) light polarization discriminators (1:107) and after robust calibration, the contribution of mineral dust particles to the co-polarized (UV, VIS) lidar channels could be removed, to reveal the backscattering coefficient of the newly nucleated particles after these numerous particles have grown to a size detectable with our lidar. Since our polarization and wavelength cross-talks are fully negligible, the observed variation in the (UV, VIS) particle backscattering time–altitude maps could be related to variations in the particle microphysics. Hence, day and nighttime differences, at low and high dust loadings, were observed in agreement with the observed nucleation process promoted by mineral dust. While light backscattering is more sensitive to small-sized particles at the UV lidar wavelength of 355 nm, such new particle formation events are here for the first time also remotely sensed at the VIS lidar wavelength of 532 nm at which most polarization lidars operate. Moreover, by addressing the (UV, VIS) backscattering Angstrom exponent, we could discuss the particles’ sizes addressed with our (UV, VIS) polarization lidar. As nucleation concerns the lowest modes of the particles’ size distribution, such a methodology may then be applied to reveal the lowest particle sizes that a (UV, VIS) polarization lidar can address, thus improving our understanding of the vertical and temporal extent of nucleation in free troposphere, where measurements are rather seldom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.