Staphylococcal enterotoxins are the most common cause of foodborne intoxications (staphylococcal food poisoning) and cause a wide range of diseases. With at least six variants staphylococcal enterotoxin C (SEC) stands out as particularly diverse amongst the 25 known staphylococcal enterotoxins. Some variants present unique and even host-specific features. Here, we review the role of SEC in human and animal health with a particular focus on its role as a causative agent for foodborne intoxications. We highlight structural features unique to SEC and its variants, particularly, the emetic and superantigen activity, as well as the roles of SEC in mastitis and in dairy products. Information about the genetic organization as well as regulatory mechanisms including the accessory gene regulator and food-related stressors are provided.
Bacillus thuringiensis is a microbial insecticide widely used to control agricultural pests. Although generally regarded as safe, B. thuringiensis is phylogenetically intermingled with the foodborne pathogen B. cereus sensu stricto and has been linked to foodborne outbreaks. Limited data on the pathogenicity potential of B. thuringiensis and the occurrence of biopesticide residues in food compromise a robust consumer risk assessment. In this study, we analyzed whole-genome sequences of 33 B. thuringiensis isolates from biopesticides, food, and human fecal samples linked to outbreaks. All food and outbreak-associated isolates genomically matched (≤ 6 wgSNPs; ≤ 2 cgSNPs) with one of six biopesticide strains, suggesting biopesticide products as their source. Long-read sequencing revealed a more diverse virulence gene profile than previously assumed, including a transposase-mediated disruption of the promoter region of the non-hemolytic enterotoxin gene nhe and a bacteriophage-mediated disruption of the sphingomyelinase gene sph in some biopesticide strains. Furthermore, we provide high-quality genome assemblies of seven widely used B. thuringiensis biopesticide strains, which will facilitate improved microbial source tracking and risk assessment of B. thuringiensis-based biopesticides in the future.
Bacillus cytotoxicus belongs to the Bacillus cereus group that also comprises the foodborne pathogen Bacillus cereus sensu stricto, Bacillus anthracis causing anthrax, as well as the biopesticide Bacillus thuringiensis. The first B. cytotoxicus was isolated in the context of a severe food poisoning outbreak leading to fatal cases of diarrheal disease. Subsequent characterization of the outbreak strain led to the conclusion that this Bacillus strain was highly cytotoxic and eventually resulted in the description of a novel species, whose name reflects the observed toxicity: B. cytotoxicus. However, only a few isolates of this species have been characterized with regard to their cytotoxic potential and the role of B. cytotoxicus as a causative agent of food poisoning remains largely unclear. Hence, the aim of this study was to gain further insights into the toxicity of B. cytotoxicus. To this end, 19 isolates were obtained from mashed potato powders and characterized by toxin gene profiling and Vero cell cytotoxicity assays. All isolates harbored the cytK1 (cytotoxin K1) gene and species-specific variants of the nhe (non-hemolytic enterotoxin) gene. The isolates exhibited low or no toxicity towards Vero cells. Thus, this study indicates that the cytotoxic potential of B. cytotoxicus may be potentially lower than initially assumed.
Kombucha is a traditional beverage obtained by the fermentation of sugared tea by a symbiotic culture of bacteria and yeast which has recently re-emerged as a popular lifestyle product with...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.