One of the main objectives of the METIS-II project was to enable 5G concepts to reach and convince a wide audience from technology experts to decision makers from non-ICT industries. To achieve this objective, it was necessary to provide easy-to-understand and insightful visualization of 5G. This paper presents the visualization platform developed in the METIS-II project as a joint work of researchers and artists, which is a 3D visualization tool that allows viewers to interact with 5G-enabled scenarios, while permitting simulation driven data to be intuitively evaluated. The platform is a game-based customizable tool that allows a rapid integration of new concepts, allows real-time interaction with remote 5G simulators, and provides a virtual reality-based immersive user experience. As a result, the METIS-II visualization platform has successfully contributed to the dissemination of 5G in different fora and its use will be continued after METIS-II.
Aerial base stations have been recently considered in the deployment of wireless networks. Finding the optimal position for one or multiple aerial base stations is a complex problem tackled by several works. However, just a few works consider the mobility of the users which makes necessary an online optimization to follow the changes in the scenario where the optimization is performed. This paper deals with the online optimization of an aerial base station placement considering different types of users mobility and three algorithms: a Qlearning technique, a Gradient-based solution and a Greedysearch solution. Our objective is to minimize in an urban environment the path loss of the user at street level with the highest path loss. Simulation results show that the performance of the three methods is similar when a high number of users move randomly and uniformly around the scenario under test. Nevertheless, in some situations when the number of users is reduced or when the users move together in a similar direction, both Gradient and Greedy algorithms present a significantly better performance than the Q-learning method.
Hoy en día el desarrollo vertiginoso de las comunicaciones móviles, promovido por la cada vez más creciente demanda de tráfico, impulsa el despliegue de redes con mejores throughputs y menores latencias. En esta investigación se hace una comparación de los sistemas LTE y LTE-Advanced por medio de un estudio de los parámetros que a nivel de enlace influyen en la tasa de datos que es experimentada por el usuario. Para ello, se compara el desempeño del enlace de comunicación entre un usuario y su estación base, empleando los simuladores LTE y LTE-Advanced Link Level desarrollados por la Universidad Tecnológica de Viena. Los resultados obtenidos muestran las ventajas de LTE-Advanced respecto a LTE, dadas por el empleo de modos de transmisión superiores. De esta forma se destaca la capacidad de las técnicas MIMO para aprovechar las características intrínsecas del canal de transmisión.
The importance of Millimeter Waves (mmW) band for the Fifth Generation (5G) of mobile and wireless communications has motivated a lot of work in mmW channel modelling. In this paper, we assess the use of the light physics modelling of a game engine to calculate the propagation losses at mmW band in an indoor scenario. With that aim, we propose a model that we refer to as Light Intensity Model (LIM), in which a detailed 3D scenario is created in a game engine, radio transmitters and receivers are replaced by light sources and detectors, and the received light intensities are translated to received radio signal power through a translation function which is the key of the model. The results obtained corroborate the validity of the assessed approach to model propagation losses in indoor scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.