Conventionally, partial differential equations (PDE) problems are solved numerically through discretization process by using finite difference approximations. The algebraic systems generated by this process are then finalized by using an iterative method. Recently, scientists invented a short cut approach, without discretization process, to solve the PDE problems, namely by using machine learning (ML). This is potential to make scientific machine learning as a new sub-field of research. Thus, given the interest in developing ML for solving PDEs, it makes an abundance of an easy-to-use methods that allows researchers to quickly set up and solve problems. In this review paper, we discussed at least three methods for solving high dimensional of PDEs, namely PyDEns, NeuroDiffEq, and Nangs, which are all based on artificial neural networks (ANNs). ANN is one of the methods under ML which proven to be a universal estimator function. Comparison of numerical results presented in solving the classical PDEs such as heat, wave, and Poisson equations, to look at the accuracy and efficiency of the methods. The results showed that the NeuroDiffEq and Nangs algorithms performed better to solve higher dimensional of PDEs than the PyDEns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.