Water tracing was conducted at Karangbolong Karst as a rapid assessment of the Kalisirah spring hydrological characteristics. This study was conducted to determine the movement of underground flow and the estimation of the Catchment Area using the Todd Nomogram and field observations. The results of flow tracing tests conducted in Pocung Cave indicate that there is underground river network connectivity between Pocung Cave, Jeblosan Sinkhole and Kalisirah Springs. Based on topographic survey and flow tracing test, the calculation of the estimated area of the Kalisirah catchment area is 180 Ha. The results were also validate using other parameters, namely flowrate and rainfall in the research location using Todd Nomogram. The estimated area of the Kalisirah catchment area with the Todd Nomogram is 189.2 Ha. The calculation of the estimated area of Kalisirah catchment area based on topographic survey and water tracing is relevant with the estimated area with Todd Nomogram. Groundwater tracing investigation can be used to determine karst spring catchment area, as a preliminary study to understanding the karst hydrology.
The karst hills of Gombong Selatan have abundant potential water resources, especially in locations that have underground springs and rivers. The connectivity between the subsurface passageways that is difficult to know can threaten the potential of water resources, one of which is due to pollution caused by uncontrolled human activities. Therefore, identification of catchment systems and boundaries of water catchment areas in karst aquifers is needed that can contribute to sustainable water resources management policies. This catchment identification needs to be conducted because previous studies have never explored the eastern side of this karst area. This study aims to (1) define the underground river flow connectivity (upstream-downstream) of Banteng Cave; and (2) limiting the water catchment area of Banteng Cave. The method used to determine the subsurface connectivity system was carried out through an artificial tracer test, while the catchment area was delineated using a water balance approach. The results showed that the underground river of Banteng Cave has connectivity with Lake Blembeng, as evidenced by a change in watercolour after the tracer test and breakthrough curve (BTC) analysis of the tracing test results. BTC analysis shows that the Banteng Cave passageway has one main passage and does not have a tunnel branch. The estimated area of the Banteng Cave catchment used a water balance approach, which is 141.73 hectares. The Banteng Cave karst catchment conditions are dominated by the formation of valleys and karst cones accompanied by the appearance of valleys and karst hills that are quite evenly distributed, indicating that the Banteng Cave karst catchment is included in the advanced karst development phase. Furthermore, this research contributes significantly to increase knowledge regarding the characteristics of void karst development in aquifers which in the future are very important for determining water resources management policies.
Karst aquifers have triple porosity (diffuse, fissure, and conduit) which makes their characterization difficult, and often requires a combination of particular methods and investigation over a long period. The purpose of this study is to analyse the components of the flood hydrograph and create a master recession curve (MRC) in karst aquifers that recharge several springs on the north side of the Karangbolong Karst Area (Gombong). The springs studied include Kalisirah, Jumbleng, and Kalikarak springs. The data used are time-series discharges recorded every 15 minutes from November 2018 to March 2020. Furthermore, the reconstruction of the flow regime for MRC is carried out with the help of RC 4.0 software, which is at the same time able to define the level of karst aquifer development. The results showed that Kalisirah and Kalikarak Springs have a complex discharge regime with a degree of karstification in class 8, while Jumbleng Springs in class 5. Analysis of the components of the flood hydrograph reinforces the results of the calculation of the karstification degree. The time to the peak (Tlag) of the Kalisirah and Kalikarak Springs is relatively fast (1.94 and 1.44 hours), which indicates that conduit flow has developed, while Jumbleng spring has a longer Tlag of 2.69 hours. Calculation of time to base flow (Tb) both manually (by flood events analysis) and automatically (by MRC) shows that Kalikarak Springs has the longest time with an average of about 31 hours which reflects that karst aquifers which contribute to it are still quite good in storing groundwater, while Jumbleng spring has the fastest Tb value with an average of 17.25 hours which reflects the shortest release of water storage compared to the other two springs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.