An entirely carbohydrate-based immunogen consisting of a zwitterionic polysaccharide (ZPS) PS A1 and the well-known tumor antigen Tn has been designed, synthesized, and studied for immunological effects. The PS A1 motif was included to act as an MHCII elicitor for a T-cell-dependent immune response with increased immunogenicity against tumor-associated carbohydrate antigens, providing an alternative to carrier proteins. Through the use of C57BL/6 mice, it has been shown that chemical modification of PS A1 does not alter the recognition sequence responsible for an MHCII-mediated, T-cell-dependent immune response. The Tn-PS A1 conjugate construct confers specificity toward the Tn antigen alone, and specific carbohydrate immunoglobulins, namely, IgG3, are generated from intraperitoneal immunizations with or without adjuvant. The properties of the vaccine candidate are attributed to a site-specific linking strategy that incurs significant incorporation of Tn antigen.
The tumor-associated carbohydrate antigen/hapten Thomsen-nouveau (Tn; α-D-GalpNAc-ONH2) was conjugated to a zwitterionic capsular polysaccharide, PS A1, from commensal anaerobe Bacteroides fragilis ATCC 25285/NCTC 9343 for the development of an entirely carbohydrate cancer vaccine construct and probed for immunogenicity. This communication discloses that murine anti-Tn IgG3 antibodies both bind to and recognize human tumor cells that display the Tn hapten. Furthermore, the sera from immunization of mice with Tn-PS A1 contain cytokine interleukin 17 (IL-17A), which is known to possess anti-tumor function and represents a striking difference to an IL-2, and IL-6 profile obtained with anti-PS A1 sera.
Recently, direct intact protein quantitation using triple quadrupole mass spectrometry (QqQ-MS) and multiple reaction monitoring (MRM) was demonstrated (J. Am. Soc. Mass Spectrom. 27, 886-896 (2016)). Even though QqQ-MS is known to provide extraordinary detection sensitivity for quantitative analysis, we found that intact proteins exhibited a less than 5% ion transmission from the first quadrupole to the third quadrupole mass analyzer in the presence of zero collision energy (ZCE). With the goal to enhance intact protein quantitation sensitivity, ion scattering effects, proton transfer effects, and mass filter resolution widths were examined for their contributions to the lost signal. Protein standards myoglobin and ubiquitin along with small molecules reserpine and vancomycin were analyzed together with various collision induced dissociation (CID) gases (N, He, and Ar) at different gas pressures. Mass resolution settings played a significant role in reducing ion transmission signal. By narrowing the mass resolution window by 0.35 m/z on each side, roughly 75%-90% of the ion signal was lost. The multiply charged proteins experienced additional proton transfer effects, corresponding to 10-fold signal reduction. A study of increased sensitivity of the method was also conducted with various MRM summation techniques. Although the degree of enhancement was analyte-dependent, an up to 17-fold increase in sensitivity was observed for ubiquitin using a summation of multiple MRM transitions. Biological matrix, human urine, and equine plasma were spiked with proteins to demonstrate the specificity of the method. This study provides additional insight into optimizing the use and sensitivity of QqQ-MS for intact protein quantification. Graphical Abstract ᅟ.
There are various reversed-phase stationary phases that offer significant differences in selectivity and retention. To investigate different reversed-phase stationary phases (aqueous stable C18 , biphenyl, pentafluorophenyl propyl, and polar-embedded alkyl) in an automated fashion, commercial software and associated hardware for mobile phase and column selection were used in conjunction with liquid chromatography and a triple quadrupole mass spectrometer detector. A model analyte mixture was prepared using a combination of standards from varying classes of analytes (including drugs, drugs of abuse, amino acids, nicotine, and nicotine-like compounds). Chromatographic results revealed diverse variations in selectivity and peak shape. Differences in the elution order of analytes on the polar-embedded alkyl phase for several analytes showed distinct selectivity differences compared to the aqueous C18 phase. The electron-rich pentafluorophenyl propyl phase showed unique selectivity toward protonated amines. The biphenyl phase provided further changes in selectivity relative to C18 with a methanolic phase, but it behaved very similarly to a C18 when an acetonitrile-based mobile phase was evaluated. This study shows the value of rapid column screening as an alternative to excessive mobile phase variation to obtain suitable chromatographic settings for analyte separation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.