5-hydroxymethylcytosine (5-hmC) is a novel DNA modification that is highly enriched in the adult brain and dynamically regulated by neural activity. 5-hmC accumulates across the lifespan; however, the functional relevance of this change in 5-hmC and whether it is necessary for behavioral adaptation have not been fully elucidated. Moreover, although the ten-eleven translocation (Tet) family of enzymes is known to be essential for converting methylated DNA to 5-hmC, the role of individual Tet proteins in the adult cortex remains unclear. Using 5-hmC capture together with high-throughput DNA sequencing on individual mice, we show that fear extinction, an important form of reversal learning, leads to a dramatic genome-wide redistribution of 5-hmC within the infralimbic prefrontal cortex. Moreover, extinction learning-induced Tet3-mediated accumulation of 5-hmC is associated with the establishment of epigenetic states that promote gene expression and rapid behavioral adaptation.E pigenetic mechanisms are critically involved in the regulation of gene expression underlying learning and memory (1). Dynamic variation in the accumulation of a particular epigenetic mark, 5-methycytosine (5-mC), has emerged as a key factor in experience-dependent plasticity and the formation of fearrelated memory (2). However, 5-mC is not the only covalent modification of DNA in eukaryotes, as methylated cytosine guanine (CpG) dinucleotides can be successively oxidized and converted to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC), and 5-carboxylcytosine by the Tet family of DNA dioxygenases (3, 4). Although little is known about the functional relevance of 5-fC and 5-carboxylcytosine (5, 6), an understanding of 5-hmC is starting to emerge. 5-hmC is highly enriched in the adult brain (7), dynamically regulated by neural activity (8), and accumulates across the lifespan (9). This epigenetic mark is critically involved in neuronal differentiation and in the reprogramming of pluripotent stem cells (10), and rather than being an intermediate state of active DNA demethylation, 5-hmC can be either dynamic or stable (8, 10). Unlike its repressive cousin, 5-mC, which is primarily found along CpG-rich gene promoters, 5-hmC is enriched within gene bodies and at intronexon boundaries of synaptic plasticity-related genes, as well as within distal cis-regulatory elements, which together point to an important role for 5-hmC in coordinating transcriptional activity (11-13). Thus, it is evident that the relationship between this particular covalent modification of DNA and gene expression is far more complex than currently realized.The inhibition of learned fear is an evolutionarily conserved behavioral adaptation that is essential for survival. This learning process, known as extinction, involves rapid reversal of previously learned contingencies, which depend on gene expression and protein synthesis. Impairments in the neural mechanisms that promote this beneficial response to threat can lead to the development of posttraumatic stress disorder ...
DNA methylation was once considered to be a static epigenetic modification whose primary function was restricted to directing the development of cellular phenotype. However, it is now evident that the methylome is dynamically regulated across the lifespan: during development as a putative mechanism by which early experience leaves a lasting signature on the genome and during adulthood as a function of behavioral adaptation. Here, we propose that experience-dependent variations in DNA methylation, particularly within the context of learning and memory, represent a form of genomic metaplasticity that serves to prime the transcriptional response to later learning-related stimuli and neuronal reactivation.
There are significant sex differences in vulnerability to develop fear-related anxiety disorders. Females exhibit twice the rate of post-traumatic stress disorder (PTSD) as males and sex differences have been observed in fear extinction learning in both humans and rodents, with a failure to inhibit fear emerging as a precipitating factor in the development of PTSD. Here we report that female mice are resistant to fear extinction, and exhibit increased DNA methylation of Bdnf exon IV and a concomitant decrease in mRNA expression within the medial prefrontal cortex. Activation of BDNF signaling by the trkB agonist 7,8-dihydroxyflavone blocks the return of fear in female mice after extinction training, and thus represents a novel approach to treating fear-related anxiety disorders that are characterized by a resistance to extinction and increased propensity for renewal.
It is well established that the coordinated regulation of activity-dependent gene expression by the histone acetyltransferase (HAT) family of transcriptional coactivators is crucial for the formation of contextual fear and spatial memory, and for hippocampal synaptic plasticity. However, no studies have examined the role of this epigenetic mechanism within the infralimbic prefrontal cortex (ILPFC), an area of the brain that is essential for the formation and consolidation of fear extinction memory. Here we report that a postextinction training infusion of a combined p300/CBP inhibitor (Lys-CoA-Tat), directly into the ILPFC, enhances fear extinction memory in mice. Our results also demonstrate that the HAT p300 is highly expressed within pyramidal neurons of the ILPFC and that the small-molecule p300-specific inhibitor (C646) infused into the ILPFC immediately after weak extinction training enhances the consolidation of fear extinction memory. C646 infused 6 h after extinction had no effect on fear extinction memory, nor did an immediate postextinction training infusion into the prelimbic prefrontal cortex. Consistent with the behavioral findings, inhibition of p300 activity within the ILPFC facilitated long-term potentiation (LTP) under stimulation conditions that do not evoke long-lasting LTP. These data suggest that one function of p300 activity within the ILPFC is to constrain synaptic plasticity, and that a reduction in the function of this HAT is required for the formation of fear extinction memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.