Flexible pressure sensors are one of the most important components in the fields of electronic skin (e‐skin), robotics, and health monitoring. However, the application of pressure sensors in practice is still difficult and expensive due to the limited sensing properties and complex manufacturing process. The emergence of MXene, a red‐hot member of the 2D nanomaterials, has brought a brand‐new breakthrough for pressure sensing. Ti3C2Tx is the most popular studied MXene in the field of pressure sensing and shows good mechanical, electrical properties, excellent hydrophilicity, and extensive modifiability. It will ameliorate the properties of the sensitive layer and electrode layer of the pressure sensor, and further apply pressure sensing to many fields, such as e‐skin flexibility. Herein, the preparation technologies, antioxidant methods, and properties of MXene are summarized. The design of MXene‐based microstructures is introduced, including hydrogels, aerogels, foam, fabrics, and composite nanofibers. The mechanisms of MXene pressure sensors are further broached, including piezoresistive, capacitive, piezoelectric, triboelectric, and potentiometric transduction mechanism. Moreover, the integration of multiple devices is reviewed. Finally, the chance and challenge of pressure sensors improved by MXene smart materials in future e‐skin and the Internet of Things are prospected.
Non‐contact humidity sensors have been widely explored as human–computer interaction for the internet of things and artificial intelligence. However, except for the existing sensing mechanisms, such as resistive, capacitive, and functional groups gradient based device, little attention has been paid to exploiting new sensing mechanisms with novel properties which can meet the requirements of miniaturization and integration. Here, a self‐powered potentiometric humidity‐transduction mechanism, which modulates the measured potential difference between two electrodes by humidity stimulation on the graphene oxide (GO) solid electrolyte, is reported. On the strength of this mechanism, a highly adjustable potentiometric humidity sensor with sandwich structure of reduced graphene oxide/GO/foamed metal (nickel, zinc, iron and copper), exhibiting good scalability and cost‐efficiency, enabling fast response/recovery (0.8 s/2.4 s), ultra‐high response (0.77 V) and excellent stability (over 1500 cycles) is developed. Unlike traditional sensing mechanisms, the manipulation mechanism raised here shows self‐powered ability with no need for an additional power unit and has ultra‐low power consumption. These results provide a new scheme for the research and development of self‐powered humidity sensors, and these sensors show superior performance in non‐contact sensing applications.
Flexible pressure sensors have aroused extensive attention in health monitoring, human–computer interaction, soft robotics, and more, as a staple member of wearable electronics. However, a majority of traditional research focuses solely on foundational mechanical sensing tests and ordinary human-motion monitoring, ignoring its other applications in daily life. In this work, a paper-based pressure sensor is prepared by using MXene/bacterial cellulose film with three-dimensional isolation layer structure, and its sensing capability as a wearable sound detector has also been studied. The as-prepared device exhibits great comprehensive mechanical sensing performance as well as accurate detection of human physiological signals. As a sound detector, not only can it recognize different voice signals and sound attributes by monitoring movement of throat muscles, but also it will distinguish a variety of natural sounds through air pressure waves caused by sound transmission (also called sound waves), like the eardrum. Besides, it plays an important role in sound visualization technology because of the ability for capturing and presenting music signals. Moreover, millimeter-scale thickness, lightweight, and degradable raw materials make the sensor convenient and easy to carry, meeting requirements of environmental protection as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.