We consider the task of temporal human action localization in lifestyle vlogs. We introduce a novel dataset consisting of manual annotations of temporal localization for 13,000 narrated actions in 1,200 video clips. We present an extensive analysis of this data, which allows us to better understand how the language and visual modalities interact throughout the videos. We propose a simple yet effective method to localize the narrated actions based on their expected duration. Through several experiments and analyses, we show that our method brings complementary information with respect to previous methods, and leads to improvements over previous work for the task of temporal action localization.
Hands are the central means by which humans manipulate their world and being able to reliably extract hand state information from Internet videos of humans engaged in their hands has the potential to pave the way to systems that can learn from petabytes of video data.This paper proposes steps towards this by inferring a rich representation of hands engaged in interaction method that includes: hand location, side, contact state, and a box around the object in contact. To support this effort, we gather a large-scale dataset of hands in contact with objects consisting of 131 days of footage as well as a 100K annotated hand-contact video frame dataset. The learned model on this dataset can serve as a foundation for handcontact understanding in videos. We quantitatively evaluate it both on its own and in service of predicting and learning from 3D meshes of human hands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.