Building shadows (BSs) frequently occur in urban areas, and their area and distribution display strong seasonal variations that significantly influence the urban land surface temperature (LST). However, it remains unclear how BSs affect the LST at the city scale because it is difficult to extract the shaded area at the subpixel scale and to connect such areas with the LST at the pixel scale. In this study, we combined the sun angle, building height, building footprint and building occlusion to extract the seasonal spatial distribution of BSs in the central area of Beijing. The effect of BSs on the LST was analyzed using LST retrieved from Landsat-8 thermal infrared sensor data. First, the relationship between the LST patch fragmentation and proportion of BSs in the sample areas was modeled without vegetation. Then, we quantitatively studied the mitigated intensity of the LST in pure impervious surfaces (IS) and vegetation pixels covered by BSs; next, we analyzed the LST sensitivity of these pixels to BSs. The results showed that the existence of BSs influences the fragmentation of the low LST patches strongly from summer to winter. On the other hand, pure IS pixels totally covered by BSs experienced a greater cooling effect, with 3.16 K on 10 July, and the lowest cooling occurred between 14 and 25 December, with a mean of 1.24 K. Without considering the relationship in winter, the LST is nonlinearly correlated to the building shadows ratio (BSR) in pixels, and an approximate 10% increase in the BSR resulted in decreases in the LST of approximately 0.33 K (mean of 16 April and 10 May), 0.37 K (10 July) and 0.24 K (28 September) for pure IS pixels, and 0.18 K, 0.20 K and 0.15 K, respectively, for pure vegetation pixels. Further analysis indicates that the LST of pure IS pixels is more sensitive to BSs than that of vegetation because the self-regulation mechanism of vegetation reduces the cooling effect of BSs. These findings can help urban planners understand the cooling characteristics of BSs and design suitable urban forms to resist urban heat islands (UHIs).
Urban building morphology has a significant impact on the urban thermal environment (UTE). The sky view factor (SVF) is an important structure index of buildings and combines height and density attributes. These factors have impact on the land surface temperature (LST). Thus, it is crucial to analyze the relationship between SVF and LST in different spatial-temporal scales. Therefore, we tried to use a building vector database to calculate the SVF, and we used remote sensing thermal infrared band to retrieve LST. Then, we analyzed the influence between SVF and LST in different spatial and temporal scales, and we analyzed the seasonal variation, day–night variation, and the impact of building height and density of the SVF–LST relationship. We selected the core built-up area of Beijing as the study area and analyzed the SVF–LST relationship in four periods in 2018. The temporal experimental results indicated that LST is higher in the obscured areas than in the open areas at nighttime. In winter, the maximum mean LST is in the open areas. The spatial experimental results indicate that the SVF and LST relationship is different in the low SVF region, with 30 m and 90 m pixel scale in the daytime. This may be the shadow cooling effect around the buildings. In addition, we discussed the effects of building height and shading on the SVF–LST relationship, and the experimental results show that the average shading ratio is the largest at 0.38 in the mid-rise building area in winter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.