Our results demonstrate convergence between AMPK and Nrf2 pathways and this intersection is essential for anti-inflammatory effect of BBR in LPS-stimulated macrophages and endotoxin-shocked mice. Uncovering this intersection is significant for understanding the relationship between energy homeostasis and antioxidative responses and may be beneficial for developing new therapeutic strategies against inflammatory diseases. Antioxid. Redox Signal. 20, 574-588.
SummaryTumour-associated macrophages (TAMs) represent a predominant population of inflammatory cells that present in solid tumours. TAMs are mostly characterized as alternatively activated M2-like macrophages and are known to orchestrate nearly all stages of tumour progression. Experimental investigations indicate that TAMs contribute to drug-resistance and radio-protective effects, and clinical evidence shows that an elevated number of TAMs and their M2 profile are correlated with therapy failure and poor prognosis in cancer patients. Recently, many studies on TAMtargeted strategies have made significant progress and some pilot works have achieved encouraging results. Among these, connections between some anti-tumour drugs and their influence on TAMs have been suggested. In this review, we will summarize recent advances in TAMtargeted strategies for tumour therapy. Based on the proposed mechanisms, those strategies are grouped into four categories: (i) inhibiting macrophage recruitment; (ii) suppressing TAM survival; (iii) enhancing M1-like tumoricidal activity of TAMs; (iv) blocking M2-like tumour-promoting activity of TAMs. It is desired that further attention be drawn to this research field and more effort be made to promote TAM-targeted tumour therapy.
Global germ line loss of fat mass- and obesity-associated (FTO) gene results in both the reduction of fat mass and lean mass in mice. The role of FTO in adipogenesis has been proposed, however, that in myogenesis has not. Skeletal muscle is the main component of body lean mass, so its connection with FTO physiologic significance need to be clarified. Here, we assessed the impact of FTO on murine skeletal muscle differentiation by in vitro and in vivo experiments. We found that FTO expression increased during myoblasts differentiation, while the silence of FTO inhibited the differentiation; in addition, skeletal muscle development was impaired in skeletal muscle FTO-deficient mice. Significantly, FTO-promoted myogenic differentiation was dependent on its m6A demethylase activity. Mechanically, we found that FTO downregulation suppressed mitochondria biogenesis and energy production, showing as the decreased mitochondria mass and mitochondrial DNA (mtDNA) content, the downregulated expression of mtDNA-encoding genes and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) gene, together with declined ATP level. Moreover, the involvement of mTOR-PGC-1α pathway in the connection between FTO and muscle differentiation is displayed, since the expression of FTO affected the activity of mTOR and rapamycin blocked FTO-induced PGC-1α transcription, along with the parallel alteration pattern of FTO expression and mTOR phosphorylation during myoblasts differentiation. Summarily, our findings provide the first evidence for the contribution of FTO for skeletal muscle differentiation and a new insight to study the physiologic significance of RNA methylation.
Normal somatic cells do not divide indefinitely and have their finite replicative lifespan. This property leads to an eventual arrest of cell division termed cell senescence. Human diploid fibroblasts offer a typical model for studying cell senescence in vitro. Various approaches to evoke oxidative stresses, such as the exposures of cells to ultraviolet light, ethanol, tert-butyl hydroperoxide (t-BHP), and peroxide hydrogen (H2O2), have been used to study the onset of cellular senescence. The early onset of cellular senescence induced by these stresses is termed stress-induced premature senescence (SIPS). In this manuscript, we will mainly summarize the basic knowledge and experimental approaches important for the induction of SIPS by H2O2, since H2O2 is the most commonly used inducer of SIPS in vitro and an endogenous source of cellular oxidative stress. Several assays methods generally used for testifying cell senescence are introduced.
BackgroundExcessive circular fatty acid, particlarly saturated fatty acid, can result in insulin resistance in skeletal muscle, but other adverse effects of fatty acid accumulation in myocytes remain unclear.MethodsDifferentiated C2C12 myotubes were used. The effects of palmitate on cell viability, glucose uptake, gene expression and myotube loss were evaluated by MTT assay, 2NBDG uptake, qRT-PCR, Western Blot and crystal staining-based myotube counting, respectively. In some expreiments, oleate was administrated, or the inhibitors of signaling pathways were applied.ResultsPalmitate-induced cellular insulin resistance was clarified by the reduced Akt phosphorylation, glucose uptake and Glut4 expression. Palmitate-caused myotube loss was clearly observed under microscope and proved by myotube counting and expression analysis of myotube marker genes. Moreover, palmitate-induced transcriptional suppression of three health benefit myokine genes (FNDC5, CTRP15 and FGF21) was found, and the different involvement of p38 and PI3K in the transcription of these genes was noticed.ConclusionsPalmitate-induced insulin resistance accompanys myotube loss and the impaired expression of FNDC5, CTRP15 and FGF21genes in C2C12 myotubes. These results provide novel evidence indicating the negative role of high concentration of palmitate in myotubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.