A homogeneous polysaccharide fraction (DOP-W3-b) with a high intestinal immunomodulating activity was obtained from the stems of Dendrobium officinale through a bioactivity-guided sequential isolation procedure based on the screening of Peyer's patch-mediated immunomodulating activity. Oral administration experiments of mice showed that DOP-W3-b could effectively regulate intestinal mucosal immune activity by changing intestinal mucosal structures, promoting the secretions of cytokines from Peyer's patches (PPs) and mesenteric lymph nodes (MLNs), and increasing the production of secretory immunoglobulin A (sIgA) in the lamina propria. Structure analysis indicated that DOP-W3-b was composed of mannose and glucose in a molar ratio of 4.5 with a relatively low molecular weight of 1.543 × 10(4) Da, and its repeat unit contained a backbone consisting of β-(1→4)-d-Manp, β-(1→4)-d-Glcp and β-(1→3,6)-d-Manp residues, a branch consisting of β-(1→4)-d-Manp, β-(1→4)-d-Glcp and terminal β-d-Glcp, and O-acetyl groups attached to O-2 of β-(1→4)-d-Manp. These results suggested that DOP-W3-b was a new polysaccharide with an essential potential for modulating body's immune functions.
PurposeThe purpose of this study was to study the influence of the minimum segment width (MSW) on volumetric modulated arc therapy (VMAT) plan quality, delivery accuracy, and efficiency for cervical cancer treatment.MethodsNineteen patients with cervical cancer were randomly selected to design VMAT plans. Three VMAT plans were generated for each patient incorporating MSWs of 0.5, 1.0, and 1.5 cm while other planning parameters remained constant using the Monaco treatment planning system (TPS) with 6 MV X rays delivered from an Elekta Synergy linear accelerator. Plan quality and delivery efficiency were evaluated based on dose‐volume histograms (DVHs), control points, monitor units (MUs), dosimetric measurement verification results, and plan delivery time.ResultsExcept for the small difference in target dose coverage and maximum dose, there were no statistically significant differences between the other dosimetric parameters in the planning target volumes. The 1.0 and 1.5 cm MSW plans showed lower maximum doses to the spinal cord than the 0.5 cm plan; doses to other organs at risks were similar regardless of MSWs. The mean reductions of total MUs when compared with the 0.5 cm plan were 14.5 ± 6.1% and 20.9 ± 7.9% for MSWs of 1.0 and 1.5 cm, respectively. The calculated gamma indices using the 3% and 3 mm criteria were 96.2 ± 0.6%, 97.0 ± 0.6%, and 97.6 ± 0.6% for the 0.5, 1.0 and 1.5 cm MSW plans, respectively. The plan delivery times decreased with increasing MSWs (p < 0.05).ConclusionIncreasing the MSW allows for improved plan delivery accuracy and efficiency without significantly affecting the VMAT plan quality. MSWs of 1.0 and 1.5 cm improved the plan quality, delivery accuracy, and efficiency for cervical VMAT radiation therapy.
• ADC metrics are associated with molecular marker status in IDC. • ADC improves differentiation of histologic phenotypes compared with ADC . • ADC metrics add value to morphologic features in IDC phenotyping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.