A room that should be comfortable for humans can create a sense of absence and appear diseases and other health problems. These rooms can be from boarding rooms, hotels, office rooms, even hospital rooms. Room occupancy prediction is expected to help humans in choosing the right room. Occupancy prediction has been evaluted with various statistical classification models such as Linier Discriminat Analysis LDA, Classification And Regresion Trees (CART), and Random Forest (RF). This study proposed learning approach to classification of room occupancy with multi layer perceptron (MLP). The result shows that a proper MLP tuning paramaters was able estimate the occupancy with 88.2% of accuracy .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.