A major area in neuroscience research is the study of how the brain processes spatial information. Neurons in the brain represent external stimuli via neural codes. These codes often arise from stereotyped stimulus-response maps, associating to each neuron a convex receptive field. An important problem consists in determining what stimulus space features can be extracted directly from a neural code. The neural ideal is an algebraic object that encodes the full combinatorial data of a neural code. This ideal can be expressed in a canonical form that directly translates to a minimal description of the receptive field structure intrinsic to the code. In here, we describe a SageMath package that contains several algorithms related to the canonical form of a neural ideal.
The brain processes information about the environment via neural codes. The neural ideal was introduced recently as an algebraic object that can be used to better understand the combinatorial structure of neural codes. Every neural ideal has a particular generating set, called the canonical form, that directly encodes a minimal description of the receptive field structure intrinsic to the neural code. On the other hand, for a given monomial order, any polynomial ideal is also generated by its unique (reduced) Gröbner basis with respect to that monomial order. How are these two types of generating sets -canonical forms and Gröbner bases -related? Our main result states that if the canonical form of a neural ideal is a Gröbner basis, then it is the universal Gröbner basis (that is, the union of all reduced Gröbner bases). Furthermore, we prove that this situation -when the canonical form is a Gröbner basis -occurs precisely when the universal Gröbner basis contains only pseudo-monomials (certain generalizations of monomials). Our results motivate two questions: (1) When is the canonical form a Gröbner basis? (2) When the universal Gröbner basis of a neural ideal is not a canonical form, what can the non-pseudo-monomial elements in the basis tell us about the receptive fields of the code? We give partial answers to both questions. Along the way, we develop a representation of pseudo-monomials as hypercubes in a Boolean lattice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.