For over 30 years a phospholipase C enzyme called alpha-toxin was thought to be the key virulence factor in necrotic enteritis caused by Clostridium perfringens. However, using a gene knockout mutant we have recently shown that alpha-toxin is not essential for pathogenesis. We have now discovered a key virulence determinant. A novel toxin (NetB) was identified in a C. perfringens strain isolated from a chicken suffering from necrotic enteritis (NE). The toxin displayed limited amino acid sequence similarity to several pore forming toxins including beta-toxin from C. perfringens (38% identity) and alpha-toxin from Staphylococcus aureus (31% identity). NetB was only identified in C. perfringens type A strains isolated from chickens suffering NE. Both purified native NetB and recombinant NetB displayed cytotoxic activity against the chicken leghorn male hepatoma cell line LMH; inducing cell rounding and lysis. To determine the role of NetB in NE a netB mutant of a virulent C. perfringens chicken isolate was constructed by homologous recombination, and its virulence assessed in a chicken disease model. The netB mutant was unable to cause disease whereas the wild-type parent strain and the netB mutant complemented with a wild-type netB gene caused significant levels of NE. These data show unequivocally that in this isolate a functional NetB toxin is critical for the ability of C. perfringens to cause NE in chickens. This novel toxin is the first definitive virulence factor to be identified in avian C. perfringens strains capable of causing NE. Furthermore, the netB mutant is the first rationally attenuated strain obtained in an NE-causing isolate of C. perfringens; as such it has considerable vaccine potential.
The airway epithelium represents the first point of contact for inhaled foreign organisms. The protective arsenal of the airway epithelium is provided in the form of physical barriers and a vast array of receptors and antimicrobial compounds that constitute the innate immune system. Many of the known innate immune receptors, including the Toll-like receptors and nucleotide oligomerization domain-like receptors, are expressed by the airway epithelium, which leads to the production of proinflammatory cytokines and chemokines that affect microorganisms directly and recruit immune cells, such as neutrophils and T cells, to the site of infection. The airway epithelium also produces a number of resident antimicrobial proteins, such as lysozyme, lactoferrin, and mucins, as well as a swathe of cationic proteins. Dysregulation of the airway epithelial innate immune system is associated with a number of medical conditions that can result in compromised immunity and chronic inflammation of the lung. This review focuses on the innate immune capabilities of the airway epithelium and its role in protecting the lung from infection as well as the outcomes when its function is compromised.
Staphylococcus aureus USA300 strains cause a highly inflammatory necrotizing pneumonia. The virulence of this strain has been attributed to its expression of multiple toxins that have diverse targets including ADAM10, NLRP3 and CD11b. We demonstrate that induction of necroptosis through RIP1/RIP3/MLKL signaling is a major consequence of S. aureus toxin production. Cytotoxicity could be prevented by inhibiting either RIP1 or MLKL signaling and S. aureus mutants lacking agr, hla or Hla pore formation, lukAB or psms were deficient in inducing cell death in human and murine immune cells. Toxin-associated pore formation was essential, as cell death was blocked by exogenous K+ or dextran. MLKL inhibition also blocked caspase-1 and IL-1β production, suggesting a link to the inflammasome. Rip3 -/- mice exhibited significantly improved staphylococcal clearance and retained an alveolar macrophage population with CD200R and CD206 markers in the setting of acute infection, suggesting increased susceptibility of these leukocytes to necroptosis. The importance of this anti-inflammatory signaling was indicated by the correlation between improved outcome and significantly decreased expression of KC, IL-6, TNF, IL-1α and IL-1β in infected mice. These findings indicate that toxin-induced necroptosis is a major cause of lung pathology in S. aureus pneumonia and suggest the possibility of targeting components of this signaling pathway as a therapeutic strategy.
Streptococcus pneumoniae remains a major cause of bacteremia, pneumonia, and otitis media despite vaccines and effective antibiotics. The neuraminidase of S. pneumoniae, which catalyzes the release of terminal sialic acid residues from glycoconjugates, is involved in host colonization in animal models of infection and may provide a novel target for preventing pneumococcal infection. We demonstrate that the S. pneumoniae neuraminidase (NanA) cleaves sialic acid and show that it is involved in biofilm formation, suggesting an additional role in pathogenesis, and that it shares this property with the neuraminidase of Pseudomonas aeruginosa even though we show that the two enzymes are phylogenetically divergent. Using an in vitro model of biofilm formation incorporating human airway epithelial cells, we demonstrate that small-molecule inhibitors of NanA block biofilm formation and may provide a novel target for preventative therapy. This work highlights the role played by the neuraminidase in pathogenesis and represents an important step in drug development for prevention of colonization of the respiratory tract by this important pathogen.
The importance of type I IFN signaling in the innate immune response to viral and intracellular pathogens is well established, with an increasing literature implicating extracellular bacterial pathogens, including Staphylococcus aureus in this signaling pathway. Airway epithelial cells and especially dendritic cells (DC) contribute to the production of type I IFNs in the lung. We were interested in establishing how S. aureus activates the type I IFN cascade in DC. In vitro studies confirmed the rapid uptake of S. aureus by DC followed promptly by STAT1 phosphorylation and expression of IFN-β. Signaling occurred using heat-killed organism and in the absence of PVL and α-toxin. Consistent with the participation of endosomal and not cytosolic receptors, signaling was predominantly mediated by MyD88, TLR9 and IRF1 and blocked by cytochalasin D, dynasore and chloroquine. To determine the role of TLR9 signaling in the pathogenesis of S. aureus pneumonia we infected WT and Tlr9−/− mice with MRSA USA300. Tlr9−/− mice had significantly improved clearance of S. aureus from the airways and lung tissue. Ifnar−/− mice also had improved clearance. This enhanced clearance in Tlr9−/− mice was not due to differences in the numbers of recruited neutrophils into the airways, but instead correlated with decreased induction of TNF. Thus, we identified TLR9 as the critical receptor mediating the induction of type I IFN signaling in dendritic cells in response to S. aureus, illustrating an additional mechanism through which S. aureus exploits innate immune signaling to facilitate infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.