The housing and pre-compressed spring of the integrated piezo longitudinal actuator can protect the piezoelectric stack from shear stress and tensile stress. In this paper, the limitations of this actuator model in existing vibration control projects are pointed out. An electromechanical coupling dynamic model in the transfer matrix form is established for the longitudinal vibration of the integrated piezo longitudinal actuator. The model includes all parameters of the integrated piezo longitudinal actuator: force and velocity at both ends, material and structural parameters, voltage and current, which is suitable for any mechanical and electrical boundary conditions; The transfer matrix method has a simple structure and clear physical definition, which is convenient to be applied to the vibration control system. This model is verified by the finite element software and experiments. In the experimental verification, an electromechanical coupling dynamic experiment system of the integrated piezo longitudinal actuator is established. The accuracy of this model is verified by comparing the frequency domain dynamic response of various parameters in the simulation and experiments. The integrated piezo longitudinal actuator model provides a wide range of possibilities for model-based controller design, active and semi-active control, electric power estimation, and optimal vibration isolation performance estimation.
The gear meshing noise generated by the helicopter main reducer is one of the important sources of noise in the helicopter cabin. By improving the isolation performance of the struts supporting reducer to the gear meshing vibration, the purpose of reducing the gear meshing noise in the helicopter cabin can be achieved. Piezoelectric stack periodic strut (PSPS) composed of piezoelectric stacks and passive materials periodically arranged is an original type of strut with active and passive hybrid isolation characteristics. Piezoelectric stacks and passive materials form a periodic structure, which makes PSPS have a unique stopband characteristic. The propagation of elastic waves in the stopband frequency range is attenuated, which can improve the broadband passive vibration isolation capability of the PSPS; The piezoelectric stacks can adjust the elastic wave propagation in the PSPS and improve the single-frequency or multifrequency active isolation performance of the PSPS. Since the driving voltage and current range of the piezoelectric stacks significantly affect the isolation performance of the PSPS, this article focuses on the relationship between the isolation performance of the PSPS and the voltage and current required by the piezoelectric stacks. Firstly, based on the passive material periodic structure transfer matrix model, the driving voltage and current of the piezoelectric stacks are introduced into the model, and a PSPS electromechanical coupling model based on the transfer matrix form is established. Secondly, the correctness of the model is verified by the finite element software. Based on the model, the design process of PSPS parameters is proposed. The optimal isolation performance of PSPS is predicted under the limitation of maximum driving voltage and current. The effects of damping loss factor, exciting force, period number and passive material on the requirements of electrical parameters for active control are studied. A three-period PSPS strut composed of piezoelectric stack actuator and PV strut is used for experimental research, and the matching of electrical parameters of this PSPS in the test is analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.