A novel polysaccharide structure (PS-T80) was collected from Ophiocordyceps sobolifera biomass and characterized via a combination of chemical and spectral analyses. Employing high-performance gel permeation chromatography (HPGPC), the average molecular weight is proven to be 7.4 × 10 4 Da. Furthermore, a sugar composition analysis of the obtained polysaccharide suggests two main sugars, β- d -glucose and α- d -mannose, at a molar ratio of 2:1, respectively, in the backbone. The structure analysis unveils that PS-T80 is a mannoglucan, possessing the repeating unit of [→3)-β- d -Glcp-(1 → 3)-α- d -Manp-(1 → 3)-β- d -Glcp-(1→] n . Such a configuration could be considered a novel polysaccharide. Impressively, in vitro antioxidant tests revealed that PS-T80 has a promising antioxidant activity. These results demonstrate that the obtained PS is a potential bioactive material for biomedical applications.
The presented study attempts to unveil and evaluate the antioxidant activity of a novel heteropolysaccharide separated from the roots of Myxopyrum smilacifolium (denoted as PS-MSR). The molecular weight of PS-MSR is found to be 1.88 × 104 Da and contains two principal sugars, which are d-glucose and d-fructose, in the backbone. Decoding the structure of the obtained PS-MSR sample has disclosed a novel polysaccharide for the first time. Indeed, the PS-MSR is composed of (1 → 3)-linked glucosyl units and (2 → 3)-linked fructosyl units. In addition, the 1D and 2D NMR spectra of the PS-MSR sample display the repeating unit of the isolated polysaccharide, [→3)-α-d-Glcp-(1 → 3)-β-d-Frucf-(2 → 3)-β-d-Frucf-2 → 3)-)-β-d-Frucf-β-(2→] n . Interestingly, the PS-MSR sample exhibits outstanding antioxidant activity, signifying the potential utilization of the explored polysaccharide for antioxidant-based material.
Fish skin discharged from the fish processing industry is an abundant source of raw material for collagen production. This work aims to optimise the experiment conditions for collagen extraction from Pangasius bocourti skin. The highest yield was obtained under the following optimal conditions: NaOH 0.1 M, citric acid 0.05 M for demineralisation and extraction, and 200 mL of 5% H2O2. The collagen was characterised from its IR spectra and SEM images, and the antioxidant activities of collagen were evaluated in vitro. The obtained collagen demonstrated appreciable total antioxidant activity, ABTS radical scavenging activity, and DPPH radical scavenging activity.
Pesticide dissipation on foods like vegetables, fruits, and cereals is one of the most concerning aspects in pesticide toxicology as it involves risks to human health and food safety. In light if this, a laboratory-scale study was conducted for two separate systems, green onions (Allium fistulosum) and mustard greens (Brassica juncea),in order to identify the dissipation of fipronil and cypermethrin, two commonly used insecticides, under a tropical climate. After the pesticide application, vegetable samples from these microcosms were collected each day for 7 days to measure fipronil and cypermethrin (n=3) residues. The analytical method was validated and showed repeatability and trueness. The decay equations fit well to first-order kinetics with a correlation coefficient of R2>0.93 and p<0.0005. The calculated half-life values of fipronil were 2.9 d for green onions and 3.2 d for mustard greens while those of cypermethrin were, respectively, 4.5 d and 3.2 d. To meet the maximum residue levels (MRL) of fipronil (0.02 mg/kg) and cypermethrin (0.7 mg/kg) on vegetables, the estimated pre-harvest intervals should be updated to 23 d and 7.5 d, respectively.
In nitrogen treatment with biological methods, nitrite metabolism is an intermediate process that facilitates other processes involving different bacteria strains. In this study, we isolated two nitrite-oxidising bacteria strains from abattoir wastewater and wastewater from biogas tanks of an industrial pig farm in Ha Tinh province. The bacteria strains grow, develop, and metabolise nitrite at pH 6–8 and 30–37 °C. The samples with the nitrite concentration up to 750 mg·L–1 were oxidised within four days of incubation, and the nitrite metabolism rate was proportional to the concentration of nitrite tested. Under severe conditions (salinity up to 3% NaCl, a low dissolved oxygen level of 0.1 mg·L–1), the two isolated bacterial strains exhibited their effective growth and nitrite metabolism capacity. The results enrich the database of nitrite-oxidising bacteria and are prospective in wastewater treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.