The Cat Ba is one of the largest Islands offshore North Vietnam, which is characterized by an abundance of coral reefs in the East and Southeast of the island. The surface sediments are considered the basic elements for the coral ecosystem development. In this study, the authors present some new results studying pH, Eh, mineral composition, and grain size as the basic information for environmental assessment of this area. The results show that the pH value of the surface sediment varies from 6.90 to 8.09, with an average of 7.24 while the Eh value of the sediment ranges from -121.10 to -48.20mV, an average of -68.39mV, demonstrating a reducing environment. The surface sediments have been classified into 8 size classes: the coarse silt > very coarse silt > medium sand, very fine sand > very coarse sand, fine sand > coarse sand, very fine gravel. Most of the sediments are poorly sorted - very poorly sorted, only a few sedimentary samples are well sorted, moderately sorted, and moderately well sorted. The average mineral composition of the surface sediments consists of: 25% quartz, 17% illite, 16% aragonite, 13% kaolinite, 10% calcite, 5% chlorite, 4% gothite, 3% halite, 2% feldspar and less montmorillonite, and dolomite. These results allowed the researcher to interpret that the sediments have been deposited in a relatively calm environment and the terrigenous sediment sources are dominant over the marine sources. Source marine sediment groups are characterized by coarse grains, high pH, and are rich in carbonate minerals, which have been produced by biological materials. In contrast, the terrigenous sediment group is dominated by fine-grained sediments, rich clay minerals, quartz, and gothite. These fine-grained sediments are commonly distributed in the area and are favorable places for pollutant accumulation.
Sediment cores, obtained in 2004Sediment cores, obtained in -2005Sediment cores, obtained in and in 2008 from seven coastal lagoons of Central Vietnam (Lang Co, Nuoc Man, Nuoc Ngot, Thi Nai, O Loan, Thuy Trieu and Dam Nai), were analysed to assess changes in 210 Pb, porosity, grain size, and depth distributions of selected major and trace elements (Al, As, Ni, and Zn). The aim was to trace sedimentary processes in areas periodically subject to extreme events. The occurrence of lateral sedimentary inhomogeneities has been hypothesised to explain the differences observed at depth for some tracer profiles, whereas topmost levels present evidence that accounts for the loss of a sediment layer (from 2.0 to 7.5 cm thick) between the two samplings. These losses might be attributed to major typhoons that impacted the coasts of Central Vietnam during the study period.
The model of Late Pleistocene-Holocene sequence stratigraphy of the subaqueous Red River delta and the adjacent shelf is proposed by interpretation of high resolution seismic documents and comparison with previous research results on Holocene sedimentary evolution on the delta plain. Four units (U1, U2, U3, and U4) and four sequence stratigraphic surfaces (SB1, TS, TRS and MFS) were determined. The formation of these units and surfaces is related to the global sea-level change in Late Pleistocene-Holocene. SB1, defined as the sequence boundary, was generated by subaerial processes during the Late Pleistocene regression and could be remolded partially or significantly by transgressive ravinement processes subsequently. The basal unit U1 (fluvial formations) within incised valleys is arranged into the lowstand systems tract (LST) formed in the early slow sea-level rise ~19-14.5 cal.kyr BP, the U2 unit is arranged into the early transgressive systems tract (E-TST) deposited mainly within incised-valleys under the tideinfluenced river to estuarine conditions in the rapid sea-level rise ~14.5-9 cal.kyr BP, the U3 unit is arranged into the late transgressive systems tract (L-TST) deposited widely on the continental shelf in the fully marine condition during the late sea-level rise ~9-7 cal.kyr BP, and the U4 unit represents for the highstand systems tract (HST) with clinoform structure surrounding the modern delta coast, extending to the water depth of 25-30 m, developed by sediments from the Red River system in ~3-0 cal.kyr BP.
Dating of sediment cores in dynamic environments (such as tropical coastal lagoons) is often impossible to achieve, due to the difficulty to recover continuous and undisturbed records. Detailed temporal definition of environmental changes cannot be assured, but there is the possibility that information retained in such sediments can still provide useful insights on local or large-scale sedimentary dynamics, when a specific strategy is adopted. This latter consists in repeated core samplings at the same location and in the comparison of core profiles for basic and easily measurable parameters (porosity and sand content). This approach was tested on sediment cores, collected repeatedly during the period 2005-2010, at the same site of the Thi Nai Lagoon (central Vietnam). The proposed procedure was able to evidence the impact on lagoon sediments of activities linked to the construction of industrial settlements in the area, with dredging removing a consistent sediment layer from 2005 to 2008 and waste dumping providing additional sediment input in the following period. Simple statistic confirmed this scenario, together with core profiles of PCBs, As, Cd, Pb, and Zn. The procedure represents a simple tool to study coastal dynamics in places where the level of accuracy of traditional sediment radiodating cannot be reached. Several ameliorations are suggested in order to help developing the monitoring of sedimentary processes in poorly studied areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.