In the electroencephalography (EEG) study, eye blinks are a commonly known type of ocular artifact that appears most frequently in any EEG measurement. The artifact can be seen as spiking electrical potentials in which their time-frequency properties are varied across individuals. Their presence can negatively impact various medical or scientific research or be helpful when applying to brain-computer interface applications. Hence, detecting eye-blink signals is beneficial for determining the correlation between the human brain and eye movement in this paper. The paper presents a simple, fast, and automated eye-blink detection algorithm that did not require user training before algorithm execution. EEG signals were smoothed and filtered before eye-blink detection. We conducted experiments with ten volunteers and collected three different eye-blink datasets over three trials using Emotiv EPOC+ headset. The proposed method performed consistently and successfully detected spiking activities of eye blinks with a mean accuracy of over 96%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.