The ensemble Kalman filter (EnKF) is a Monte Carlo approximation of the Kalman filter for high dimensional linear Gaussian state space models. EnKF methods have also been developed for parameter inference of static Bayesian models with a Gaussian likelihood, in a way that is analogous to likelihood tempering sequential Monte Carlo (SMC). These methods are commonly referred to as ensemble Kalman inversion (EKI). Unlike SMC, the inference from EKI is only asymptotically unbiased if the likelihood is linear Gaussian and the priors are Gaussian. However, EKI is significantly faster to run. Currently, a large limitation of EKI methods is that the covariance of the measurement error is assumed to be fully known. We develop a new method, which we call component-wise iterative ensemble Kalman inversion (CW-IEKI), that allows elements of the covariance matrix to be inferred alongside the model parameters at negligible extra cost. This novel method is compared to SMC on three different application examples: a model of nitrogen mineralisation in soil that is based on the Agricultural Production Systems Simulator (APSIM), a model predicting seagrass decline due to stress from water temperature and light, and a model predicting coral calcification rates. On all of these examples, we find that CW-IEKI has relatively similar predictive performance to SMC, albeit with greater uncertainty, and it has a significantly faster run time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.