This paper proposes the design of a four-element array planar antenna based on a single antenna that combines the Double Positive (DPS) and Epsilon Negative (ENG) materials. The single antenna consists of a microstrip segment (which is equivalent to a DPS material) connected to a grounded microstrip segment (which is equivalent to an ENG material). T-Junction power dividers with one-input and two-output ports are used for feeding the two-element and the four-element array antennas. The proposed array antenna is designed to operate optimally at 30GHz frequency under Finite Element Method (FEM)-based simulation. The obtained simulation results show that the proposed array antennas have good radiation performances, in which the four-element array antenna has a -10dB bandwidth ranging from 28.7 to 33.4GHz and 12.9dBi gain.
In this paper, a low-profile broadband antenna is proposed for future 5G millimeter-wave cellular wireless networks. The proposed antenna is a modified Magneto-Electric (ME) dipole, which consists of four metallic plates, grounded vias, an aperture fed, a ground plane, and a microstrip line feed. The antennas are built on RT/Duroid 5880 substrates and have been realized by the printed circuit board technique. A single-element with an overall of 10×10×1.04mm3 (~1.26λo×1.26λo×0.13λo at 38GHz) exhibits an impedance matching of 27.9% (32.2-42.8GHz) for |S11|<–10dB and a realized gain up to 7.5dBi over the frequency band. The usefulness of these antennas as beamforming radiators is demonstrated by a 1×4 element linear array. Also, a wide-band excitation is applied for the linear ME dipole array to realize a broadband array. The simulated results proved the proposed array can operate in a frequency band spreading from 31.4GHz to 42.1GHz with a gain of 12.5dBi and a side-lobe of -13dB
A dual-band MIMO antenna with a high isolation is presented in this paper. The proposed MIMO antenna consists of two identical E-shaped micro-strip antennas which are designed on an FR4 substrate. The antenna is designed for radiating at 2.6 GHz and 5 GHz that can be used for the applications of 4G and 5G systems, respectively. Neutral line technique is used for mutual coupling reduction between the E-shaped antenna. Good isolation characteristics are obtained by using single micro-strip line connected between two elements of MIMO antenna. The antenna is fabricated and measured, and good agreement is achieved between the experimental and simulated results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.