Aim Crop wild relatives (CWR) are an essential source of genetic material for the improvement of certain traits in related crop species. Despite their importance, increasing public, scientific and political support, large gaps exist in the amount of genetic material collected and conserved of many CWR. Here, we construct a dataset on the distribution of wild banana species (Musa spp.) and assess their risk and conservation status. We deal with the following questions: (a) What areas are potentially suitable for wild banana species? (b) How much of the wild banana diversity is currently at risk or insufficiently conserved ex and in situ? Location Native distribution area of wild banana species, ranging from the north‐eastern states of India to north‐eastern Australia. Methods We assessed the potential environmental range of wild species using a species distribution modelling approach with MaxEnt. Extinction risk was evaluated following IUCN criterion B, and the ex and in situ conservation status was assessed using an indicator for biodiversity and sustainable development targets. Results We found that 11 out of 59 assessed species can be considered as vulnerable and nine as endangered. Highest species richness was found along the border of south China and northern Vietnam, in the north‐eastern states of India and on the Malayan peninsula. Our distribution modelling approach indicates that the northern Indo‐Burmese region has the highest environmental suitability for most wild banana species and that lowland rain forests in general are highly suitable for bananas. Assessment of in and ex situ conservation status indicates that 56 out of 59 assessed species are currently insufficiently conserved ex situ and that 49 are of high priority for further conservation. Additional in situ conservation is of high priority for six species and of medium priority for 40 species. Main conclusions To date, little of the banana CWR are sufficiently conserved both in and ex situ.
The fungal genus Fusarium (Ascomycota) includes well-known plant pathogens that are implicated in diseases worldwide, and many of which have been genome sequenced. The genus also encompasses other diverse lifestyles, including species found ubiquitously as asymptomatic-plant inhabitants (endophytes). Here, we produced structurally annotated genome assemblies for five endophytic Fusarium strains, including the first whole-genome data for Fusarium chuoi. Phylogenomic reconstruction of Fusarium and closely related genera revealed multiple and frequent lifestyle transitions, the major exception being a monophyletic clade of mutualist insect symbionts. Differential codon usage bias and increased codon optimisation separated Fusarium sensu stricto from allied genera. We performed computational prediction of candidate secreted effector proteins (CSEPs) and carbohydrate-active enzymes (CAZymes)—both likely to be involved in the host–fungal interaction—and sought evidence that their frequencies could predict lifestyle. However, phylogenetic distance described gene variance better than lifestyle did. There was no significant difference in CSEP, CAZyme, or gene repertoires between phytopathogenic and endophytic strains, although we did find some evidence that gene copy number variation may be contributing to pathogenicity. Large numbers of accessory CSEPs (i.e., present in more than one taxon but not all) and a comparatively low number of strain-specific CSEPs suggested there is a limited specialisation among plant associated Fusarium species. We also found half of the core genes to be under positive selection and identified specific CSEPs and CAZymes predicted to be positively selected on certain lineages. Our results depict fusarioid fungi as prolific generalists and highlight the difficulty in predicting pathogenic potential in the group.
Crop wild relatives (CWR) are an indispensable source of alleles to improve desired traits in related crops. While knowledge on the genetic diversity of CWR can facilitate breeding and conservation strategies, it has poorly been assessed. Cultivated bananas are a major part of the diet and income of hundreds of millions of people and can be considered as one of the most important fruits worldwide. Here, we assessed the genetic diversity and structure of Musa balbisiana, an important CWR of plantains, dessert and cooking bananas. Musa balbisiana has its origin in subtropical and tropical broadleaf forests of northern Indo-Burma. This includes a large part of northern Vietnam where until now, no populations have been sampled. We screened the genetic variation and structure present within and between 17 Vietnamese populations and six from China using 18 polymorphic SSR markers. Relatively high variation was found in populations from China and central Vietnam. Populations from northern Vietnam showed varying levels of genetic variation, with low variation in populations near the Red River. Low genetic variation was found in populations of southern Vietnam. Analyses of population structure revealed that populations of northern Vietnam formed a distinct genetic cluster from populations sampled in China. Together with populations of central Vietnam, populations from northern Vietnam could be subdivided into five clusters, likely caused by mountain ranges and connected river systems. We propose that populations sampled in central Vietnam and on the western side of the Hoang Lien Son mountain range in northern Vietnam belong to the native distribution area and should be prioritised for conservation. Southern range edge populations in central Vietnam had especially high genetic diversity, with a high number of unique alleles and might be connected with core populations in northern Laos and southwest China. Southern Vietnamese populations are considered imported and not native.
The Adapting Agriculture to Climate Change Project set out to improve the diversity, quantity, and accessibility of germplasm collections of crop wild relatives (CWR). Between 2013 and 2018, partners in 25 countries, heirs to the globetrotting legacy of Nikolai Vavilov, undertook seed collecting expeditions targeting CWR of 28 crops of global significance for agriculture. Here, we describe the implementation of the 25 national collecting programs and present the key results. A total of 4587 unique seed samples from at least 355 CWR taxa were collected, conserved ex situ, safety duplicated in national and international genebanks, and made available through the Multilateral System (MLS) of the International Treaty on Plant Genetic Resources for Food and Agriculture (Plant Treaty). Collections of CWR were made for all 28 targeted crops. Potato and eggplant were the most collected genepools, although the greatest number of primary genepool collections were made for rice. Overall, alfalfa, Bambara groundnut, grass pea and wheat were the genepools for which targets were best achieved. Several of the newly collected samples have already been used in pre-breeding programs to adapt crops to future challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.