Double hydrophilic block copolymers, poly(N-isopropylacrylamide)-b-poly(N-vinylimidazole) (PNIPAM-b-PVim), were successfully prepared with good control via reversible addition−fragmentation chain transfer (RAFT) using PNIPAM-based macromolecular xanthate agents (i.e., MADIX, macromolecular design via the interchange of xanthates). This represents the first preparation of well-defined block copolymers based on PVim, which has been well-known to be able to catalyze esterolysis reactions. The imidazole-containing diblock copolymers molecularly dissolve at low temperatures in water. Above the phase transition temperatures of PNIPAM or in a proper mixture of methanol/water (cononsolvency), the PNIPAM block becomes hydrophobic and stable micelles form with a dense core consisting of a hydrophobic PNIPAM block and a polar PVim shell. The catalytic activities of PNIPAM44 -b-PVim51 and PNIPAM44 -b-PVim21 toward the hydrolysis of p-nitrophenyl acetate (NPA) at different temperatures or methanol/water compositions were then determined using a stopped-flow apparatus and compared to that of PVim homopolymer. The Arrhenius plot for the PVim-based diblock copolymers exhibited a pronounced upward curvature above the critical micellization temperature (cmt). Moreover, in the methanol/water mixture, the catalytic activities of PNIPAM-b-PVim diblock copolymers evolved discontinuously as a function of solvent composition and exhibited a maximum in the range of volume fraction of methanol, φmethanol, between 0.3 and 0.5, corresponding to the solvent composition range where cononsolvency-induced micellization took place. We thus observed for the first time that double hydrophilic block copolymer micelles of PNIPAM-b-PVim can serve as self-catalyzing nanoreactors. Most importantly, the catalytic activities can be well-tuned with external temperature or solvent compositions.
Frechet-type benzyl ether dendrons of second and third generations with a carboxyl group (G2, G3) at the apex site could attach to poly(4-vinylpyridine) (PVP), forming hydrogen-bonded dendronized polymers (HB denpols) in their common solvent, chloroform. The HB denpols show unique self-assembly behavior, forming vesicles in the common solvent under ultrasonic treatment. The structure and morphology of the vesicles were characterized by dynamic light scattering (DLS), static light scattering (SLS), SEM, TEM, and AFM. The size of the vesicles decreases and the thickness of the vascular membrane increases as the molar ratio of Gx/PVP increases. The hydrogen bonding, pi-pi aromatic stacking of the dendrons, and the considerable difference in architecture between the dendron Gx and PVP are the main factors facilitating the assembly of the HB denpols in the common solvent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.