Two different synthetic routes were explored for the synthesis of fluoro furanyl norprogesterone (FFNP) 1, a high-affinity ligand for the progesterone receptor (PgR) that is being developed as a PET imaging agent for PgR-positive breast cancer. Both approaches proceed through a key intermediate, triol 5. The first approach, starting from keto-ketal 2, employed a dioxenyl group as a synthon for installing a corticosteroid side chain in keto-alcohol 4. The second approach, starting from propargylic acetate 12b, involved the application of a two-step method, a Pd(II)-catalyzed oxidative rearrangement followed by a base-catalyzed acetate rearrangement of the intermediate unsaturated acetate 13b, to generate the requisite corticosteroid side chain in keto-acetate 14b. This intermediate was further elaborated to the final product 1 via efficient dihydroxylation with potassium permangnate, furan acetalization with scandium triflate, and mesylation and fluorination reactions. The palladium-catalyzed route is considerably more efficient than the dioxene approach for the synthesis of key intermediate triol 5, and the scandium triflate-catalyzed acetalization, in particular, led to a considerable improvement in the overall yield of the endo furan acetal alcohol 16a. This route provides a major improvement in the overall yield of the final progestin target, FFNP 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.