An outbreak of the 2019 Novel Coronavirus Disease (COVID-19) in China caused by the emergence of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARSCoV2) spreads rapidly across the world and has negatively affected almost all countries including such the developing country as Vietnam. This study aimed to analyze the spatial clustering of the COVID-19 pandemic using spatial auto-correlation analysis. The spatial clustering including spatial clusters (high-high and low-low), spatial outliers (low-high and high-low), and hotspots of the COVID-19 pandemic were explored using the local Moran’s I and Getis-Ord’s G* i statistics. The local Moran’s I and Moran scatterplot were first employed to identify spatial clusters and spatial outliers of COVID-19. The Getis-Ord’s G* i statistic was then used to detect hotspots of COVID-19. The method has been illustrated using a dataset of 86,277 locally transmitted cases confirmed in two phases of the fourth COVID-19 wave in Vietnam. It was shown that significant low-high spatial outliers and hotspots of COVID-19 were first detected in the NorthEastern region in the first phase, whereas, high-high clusters and low-high outliers and hotspots were then detected in the Southern region of Vietnam. The present findings confirm the effectiveness of spatial auto-correlation in the fight against the COVID-19 pandemic, especially in the study of spatial clustering of COVID-19. The insights gained from this study may be of assistance to mitigate the health, economic, environmental, and social impacts of the COVID-19 pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.