To elucidate the structural stability and the unfolding dynamics of the animal prion protein, the temperature induced structural evolution of turtle prion protein (tPrPc) and bank vole prion protein (bvPrPc) have been performed with molecular dynamics (MD) simulation. The unfolding behaviors of secondary structures showed that the α-helix was more stable than β-sheet. Extension and disruption of β-sheet commonly appeared in the temperature induced unfolding process. The conversion of α-helix to π-helix occurred more readily at the elevating temperature. Furthermore, it was suggested in this work that the unfolding of prion protein could be regulated by the temperature.
Binding properties of wild type (WT) and six single amino acid substituted variants (E3A, E9A, D12A, D20A, F23A, and E58A) of insulin-like growth factor I (IGF-I) were analyzed with respect to their binding details to IGF binding proteins (IGFBPs) by molecular dynamics (MD) simulations. The binding sites and binding interactions on IGF-I and IGFBPs are screened and compared with the static X-ray structure. Electrostatic interaction is the primary driving force of the interaction between IGF-I and IGFBPs. Mutation may cause the rearrangement of binding sites, however, the unfolding of protein induced by mutation is not obvious in this work. We also provide the detailed picture of binding factors. And the results show that, whether the unfolding of helix occurs or not, the Ala mutation will change the molecular atmosphere of the binding interface by the rearrangement of conformation, and further affects the binding residues and binding interactions.
Insulin-like growth factor-binding proteins (IGFBPs) control bioactivity and distribution of insulin-like growth factors (IGFs) through high-affinity complex of IGFBP and IGF. To get more insight into the binding interaction of IGF system, the site-directed mutagenesis and force-driving desorption methods were employed to study the interaction mechanism of IGFBP4 and IGF-I by molecular dynamics (MD) simulation. In IGF-I, residues Gly7 to Asp12 were found to be the hot spots and they mainly anchored on the N-domain of IGFBP4. The contact area, the shape and size of protein, the surroundings of the binding site, the hydrophobic and electrostatic interaction between the two proteins worked as a complex network to regulate the protein-protein interaction. It was also found that the unfolding of the helix was not inevitable in the mutant, and it could be regulated by careful selection of the substituted amino acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.