Swimming performance is a key feature that mediates fitness and survival in many fish species. Using a swim tunnel respirometer, we compared prolonged swimming performance and energy use for two competing species: an endangered, endemic toothcarp (Aphanius iberus) and a worldwide invasive mosquitofish (Gambusia holbrooki). Critical (Ucrit) and optimal swimming speeds, standard and maximal metabolic rates, absolute aerobic scope, as well as the minimum cost of transport were estimated and compared between species and sexes. Body streamlining and caudal peduncle depth were also measured to explain the differences in swimming performance and efficiency. Both sexes of A. iberus presented similar swimming capacity and metabolic traits, whereas males of G. holbrooki showed higher critical swimming speeds, maximal metabolic rate and absolute aerobic scope than females. We also found marked differences between species in most of the response variables examined. Aphanius iberus showed lower swimming capacity (Ucrit mean <10 cm s−1), higher maximal metabolic rate and absolute aerobic scope than the invasive species. By contrast, G holbrooki swam faster and had lower cost of transport at a given fish mass and speed, thereby leading to a higher swimming efficiency. The observed differences in swimming efficiency were closely related to differences in morphological characteristics and therefore to drag pressures and propulsion. Our results add a mechanistic basis to the ecological understanding of these two species and suggest that although both are poor swimmers compared to many other similarly sized species, the native species likely has more restricted water flow tolerance and dispersal capacities.
The bleak Alburnus alburnus is native to most of Europe. This cyprinid fish is a successful invader in the Iberian Peninsula. No studies exist on its foraging strategies on a large scale for this ecoregion. The aim of the present study was to compare dietary traits of invasive bleak among the main Iberian rivers and a ‘reference’ native bleak population from France. Bleak were sampled during May–June 2019 from the Iberian Rivers Ebro, Tagus, Guadiana, Segura and Guadalquivir and the River Saône (France). Diptera larvae and zooplankton were common food categories in the River Saône. Insect nymphs were more important in the River Ebro. The intake of plant material was higher in the River Tagus. Flying insects were more consumed in the River Guadiana. Nektonic insects were important in the River Guadalquivir. Detritus was a frequent food category for all populations, in terms of occurrence and mass. Dietary parameters followed a unimodal response in relation to the latitudinal gradient, with the maximum values for the Tagus and Guadiana populations. Overall, results suggest that this wide inter-population variability will contribute to the species’ successful establishment throughout Mediterranean Europe, which poses a serious risk to its highly valuable native fish fauna.
Physiological features of species can determine the resilience and adaptation of organisms to the environment. Swimming capacity and metabolic traits are key factors for fish survival, mating and predator-prey interactions. Individuals of the same species can display high phenotypic variation often in response to varying environmental conditions. We investigated the effects of captive breeding conditions on swimming capacity, metabolic traits and morphology by comparing a captive population with a wild population of the endangered Spanish toothcarp (Aphanius iberus). We measured swimming capabilities and oxygen-uptake rates simultaneously, the latter as a proxy for metabolic rate, using a swim tunnel respirometer. Results showed significant differences in standard metabolic rate (SMR), maximum metabolic rate (MMR) and absolute aerobic scope (AAS) between populations, as well as differences in morphological features between populations and sexes. In contrast, we did not find significant differences in critical swimming speed between populations or sexes. Differences in SMR between sexes were found in the captive population, and males showed nearly a twofold increase in SMR when compared with females. SMR, MMR and AAS were, on average, twofold lower for the captive population in comparison with the wild population. These differences in metabolic traits likely reflected captivity conditions, which were low food availability and the absence of predators, which in turn, may have influenced morphological traits, such as body and caudal peduncle shape and head size. At the same time, morphological traits also influenced metabolic traits of the populations. The lower SMR and MMR of captive individuals may be related to their deeper body shapes. Taken together, our results suggested that captive breeding conditions caused significant physiological and morphological changes in the endangered Spanish toothcarp. Reduced metabolic traits and changes in morphology may affect fitness-related traits of the captive populations once reintroduced into the wild, thereby compromising conservation efforts. We therefore recommend to experimentally testing for the effects and consequences of captive breeding conditions
The bleak Alburnus alburnus is a medium body-size leuciscid fish that is naturally distributed across central European and western Asian fresh waters. However, during the last two decades A. alburnus has been widely introduced elsewhere in Europe and in northern Africa, mostly as a forage species for game fishes. Given its relatively recent history of invasion in non-native Eurasian waters, where it can become highly abundant, A. alburnus poses a serious risk to native communities where introduced. This study provides a review and meta-analysis of the biological traits of A. alburnus coupled with insights into its invasiveness. In its native range, A. alburnus has a moderate lifespan, inhabiting lakes or still waters in medium-to-large rivers, where it feeds mainly on zooplankton. However, non-native A. alburnus populations display high phenotypic plasticity in their biological attributes. Thus, growth, reproductive and/or dietary traits have adapted to local environmental conditions, with the species also invading lotic (stream) ecosystems. Feeding changes to benthic invertebrates, plant material and detritus when zooplankton is scarce. Such plasticity, including broad physiological tolerance, is likely to facilitate the species' adaptation and invasion of new habitats in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.