The mechanical behavior of knitted textiles is simulated using finite element analysis (FEA). Given the strong coupling between geometrical and physical aspects that affect the behavior of this type of engineering materials, there are several challenges associated with the development of computational tools capable of enabling physics-based predictions, while keeping the associated computational cost appropriate for use within design optimization processes. In this context, this paper investigates the relative contribution of a number of computational factors to both local and global mechanical behavior of knitted textiles. Specifically, different yarn-to-yarn interaction definitions in three-dimensional (3D) finite element models are compared to explore their relative influence on kinematic features of knitted textiles' mechanical behavior. The relative motion between yarns identified by direct numerical simulations (DNS) is then used to construct reduced order models (ROMs), which are shown to be computationally more efficient and providing comparable predictions of the mechanical performance of knitted textiles that include interfacial effects between yarns.
Direct numerical simulations (DNS) of knitted textile mechanical behavior are for the first time conducted on high performance computing (HPC) using both the explicit and implicit finite element analysis (FEA) to directly assess effective ways to model the behavior of such complex material systems. Yarn-level models including interyarn interactions are used as a benchmark computational problem to enable direct comparison in terms of computational efficiency between explicit and implicit methods. The need for such comparison stems from both a significant increase in the degrees-of-freedom (DOFs) with increasing size of the computational models considered as well as from memory and numerical stability issues due to the highly complex three-dimensional (3D) mechanical behavior of such 3D architectured materials. Mesh and size dependency, as well as parallelization in an HPC environment are investigated. The results demonstrate a satisfying accuracy combined with higher computational efficiency and much less memory requirements for the explicit method, which could be leveraged in modeling and design of such novel materials.
As a type of architectured material, knitted textiles exhibit global mechanical behavior which is affected by their microstructure defined at the scale at which yarns are arranged topologically given the type of textile manufactured. To relate local geometrical, interfacial, material, kinematic and kinetic properties to global mechanical behavior, a first-order, two-scale homogenization scheme was developed and applied in this investigation. In this approach, the equivalent stress at the far field and the consistent material stiffness are explicitly derived from the microstructure. In addition, the macrofield is linked to the microstructural properties by a user subroutine which can compute stresses and stiffness in a looped finite element (FE) code. This multiscale homogenization scheme is computationally efficient and capable of predicting the mechanical behavior at the macroscopic level while accounting directly for the deformation-induced evolution of the underlying microstructure.
The nonlinear, anisotropic, and multiscale mechanical behavior of knitted textiles is investigated experimentally in this article. The approach is motivated by recent computational work by the authors that revealed, for the first time to their best knowledge, local‐global mechanical behavior effects related to the hierarchical, three‐dimensional structure of this type of materials. The investigation is carried out on single jersey knitted textile specimens. Mechanical testing consisting of tensile loading along the two principal directions was coupled with a noncontact, optical metrology method capable of providing deformation measurements. The effect of globally applied loading on yarn‐to‐yarn interactions was explored using measured data. The results validate the previously obtained computational findings that include the anisotropic behavior between course and wale directions, the pronounced out‐of‐plane motion observed when in‐plane loading is applied, as well as the characteristic nonlinear mechanical behavior of knitted textiles. These effects were linked to direct observations of the loop structure that demonstrated the coupling between local kinematics and kinetics with global mechanical behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.