Abstract-Government information is a vital asset that must be kept in a trusted environment and efficiently managed by authorised parties. Even though e-Government provides a number of advantages, it also introduces a range of new security risks. Sharing confidential and top-secret information in a secure manner among government sectors tend to be the main element that government agencies look for. Thus, developing an effective methodology is essential and it is a key factor for e-Government success. The proposed e-Government scheme in this paper is a combination of identity-based encryption and biometric technology. This new scheme can effectively improve the security in authentication systems, which provides a reliable identity with a high degree of assurance. In addition, this paper demonstrates the feasibility of using Finite-state machines as a formal method to analyse the proposed protocols.
Phishing attacks are cybersecurity threats that have become increasingly sophisticated. Phishing is a cyberattack that can be carried out using various approaches and techniques. Usually, an attacker uses trickery as well as fraudulent and disguised means to steal valuable personal information or to deceive the victim into running malicious code, thereby gaining access and controlling the victim’s systems. This study focuses on evaluating the level of cybersecurity knowledge and cyber awareness in Saudi Arabia. It is aimed at assessing end-user susceptibility through three phishing attack simulations. Furthermore, we elaborate on some of the concepts related to phishing attacks and review the steps required to launch such attacks. Subsequently, we briefly discuss the tools and techniques associated with each attack simulation. Finally, a comprehensive analysis is conducted to assess and evaluate the results.
Abstract-Government information is a vital asset that must be kept in a trusted environment and efficiently managed by authorised parties. Even though e-Government provides a number of advantages, it also introduces a range of new security risks. Sharing confidential and top-secret information in a secure manner among government sectors tends to be the main element that government agencies look for. Thus, developing an effective methodology is essential and it is a key factor for e-Government success. The proposed e-Government scheme in this paper is a combination of identity-based encryption and biometric technology. This new scheme can effectively improve the security in authentication systems, which provides a reliable identity with a high degree of assurance. This paper also demonstrates the feasibility of using finite-state machines as a formal method to analyse the proposed protocols. Finally we showed how Petri Nets could be used to simulate the communication patterns between the server and client as well as to validate the protocol functionality.
Abstract-This paper demonstrates a comprehensive analysis method using formal methods such as finite-state machine. First, we describe the modified version of our new protocol and briefly explain the encrypt-then-authenticate mechanism, which is regarded as more a secure mechanism than the one used in our protocol. Then, we use a finite-state verification to study the behaviour of each machine created for each phase of the protocol and examine their behaviours together. Modelling with finitestate machines shows that the modified protocol can function correctly and behave properly even with invalid input or time delay.
An emerging technology with a secure and a decentralized nature, blockchain has the potential to transform conventional practices in an efficient and dynamic manner. However, migrating to blockchain can be challenging due to the complexity of its infrastructure and processes. The complexity of building applications on blockchain has been highlighted by many studies, thus stressing the need to investigate practical solutions further. A commonly known software engineering concept, software design pattern contributes to the acceleration of software development. It offers a holistic reusable solution for commonly occurring problems in a given context. It helps to identify problems that occur repetitively and describes best practices to address them. The present study is one of the first investigations to inquire into design patterns for blockchain application. Seeking to reduce the complexity in understanding and building applications on blockchain, this paper identifies a design pattern elicitation framework from similar blockchain applications. Next, it provides a demonstration of the Proof of Integrity (PoI) pattern elicited from two different applications on the blockchain. The applicability of the pattern is evaluated by building a blockchain application to verify the integrity of the academic certificates and by explaining how this integrity has been achieved empirically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.