Phospholipases A2 enzymes are found in many mammalian tissues and in animal venoms. Those present in bee venom (bvPLA2) and snake venom (svPLA2) have been studied more particularly for their biological activities of interest. Although they belong to the same family of secreted PLA2 (sPLA2), bvPLA2 and svPLA2 differ from a structural and functional point of view. In this review, we describe the morphological characteristics of these two enzymes and the structural determinants that govern their functions. After describing their cytotoxicity, we compared their biological activities, including antimicrobial, anti-tumor, anti-inflammatory, anti-neurodegenerative, and anti-nociceptive effects. In addition, we highlighted their therapeutical applications and deduced bvPLA2 has better potential than svPLA2 in biotechnological and pharmaceutical innovations.
Background Montivipera bornmuelleri’s venom has shown immunomodulation of cytokines release in mice and selective cytotoxicity on cancer cells in a dose-dependent manner, highlighting an anticancer potential. Here, we extend these findings by elucidating the sensitivity of murine B16 skin melanoma and 3-MCA-induced murine fibrosarcoma cell lines to M. bornmuelleri’s venom and its effect on tumor growth in vivo. Methods The toxicity of the venom on B16 and MCA cells was assessed using flow cytometry and xCELLigence assays. For in vivo testing, tumor growth was followed in mice after intratumoral venom injection. Results The venom toxicity showed a dose-dependent cell death on both B16 and MCA cells. Interestingly, overexpression of ovalbumin increased the sensitivity of the cells to the venom. However, the venom was not able to eradicate induced-tumor growth when injected at 100 µg/kg. Our study demonstrates a cytotoxic effect of M. bornmuelleri’s venom in vitro which, however, does not translate to an anticancer action in vivo.
Atherosclerosis is an inflammatory chronic disease of the arterial wall. Monomeric (m) and pentameric (p) C-reactive protein (CRP) and oxidized low density lipoproteins (oxLDL) seem to affect the pattern of cytokine production by macrophages, thus playing an important role in atherogenesis. Azide, the commercial preservative of CRP, may influence its action in vitro. The present study aimed to determine the effects of both isoforms of azide-containing CRP (mCRP and pCRP) with and without oxLDL on cytokine production by U937-derived macrophages. U937 monocytes were cultured and differentiated into macrophages and treated with mCRP, pCRP, oxLDL and azide individually and in combination. ELISA were performed to measure the levels of interferon-γ (IFN-γ), interleukin (IL)-4, IL-6, IL-10 and tumor necrosis factor (TNF)-α in culture supernatants collected from U937-derived macrophages following their respective treatments. Most single and combined treatments, especially in triple combination, were able to downregulate the levels of IFN-γ and IL-6 compared with control untreated cells, whilst the combination of mCRP and pCRP increased IL-4 levels. Regarding IL-10, except for an increase induced by mCRP, no significant effect was caused by any treatment compared with the control. On the other hand, the levels of TNF-α were not significantly affected by any treatment except for a decreasing trend that was observed with mCRP/oxLDL treatment compared with control. By contrast, double azide caused a significant decrease in the levels of IFN-γ and IL-6. The results of the present study indicated that mCRP, pCRP, oxLD and possibly azide, individually or in different combinations, had the tendency to upregulate the expression of IL-4 and to downregulate that of the pro-atherogenic cytokines, IFN-γ and IL-6, suggesting that the intima microenvironment serves a crucial role in atherogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.